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Summary
Growing interest in understanding, predicting, and controlling 
advanced oil-recovery methods emphasizes the importance of 
numerical methods that exploit the nature of the underlying phys-
ics. The fully implicit method offers unconditional stability of the 
discrete approximations. This stability comes at the expense of 
transferring the inherent physical stiffness onto the coupled nonlin-
ear residual equations that are solved at each timestep. Current res-
ervoir simulators apply safeguarded variants of Newton’s method 
that can neither guarantee convergence nor provide estimates of the 
relation between convergence rate and timestep size. In practice, 
timestep chops become necessary and are guided heuristically. 
With growing complexity, such as in thermally reactive composi-
tional flows, convergence difficulties can lead to substantial losses 
in computational effort and prohibitively small timesteps. We 
establish an alternative class of nonlinear iteration that converges 
and associates a timestep to each iteration. Moreover, the linear 
solution process within each iteration is performed locally. 

By casting the nonlinear residual equations for a given timestep 
as an initial-value problem, we formulate a continuation-based 
solution process that associates a timestep size with each iteration. 
Subsequently, no iterations are wasted and a solution is always 
attainable. Moreover, we show that the rate of progression is as 
rapid as that for a convergent standard Newton method. More-
over, by exploiting the local nature of nonlinear wave propagation 
typical to multiphase-flow problems, we establish a linear solution 
process that performs computation only where necessary. That is, 
given a linear convergence tolerance, we identify a minimal subset 
of solution components that will change by more than the speci-
fied tolerance. Using this a priori criterion, each linear step solves 
a reduced system of equations. Several challenging examples are 
presented, and the results demonstrate the robustness and compu-
tational efficiency of the proposed method.

Introduction
Multiphase, multicomponent flows through subsurface porous 
media couple several physical phenomena with vastly differing 
characteristic scales. The fastest processes, such as component-
phase equilibria, are assumed to occur instantaneously, and they 
are modeled as nonlinear algebraic constraints. Mass-conservation 
laws govern the transport of components propagating through the 
flow field. These transport phenomena are near-hyperbolic, and 
they evolve with a finite domain of dependence. Moreover, the 
flow field itself is transient and evolves with parabolic or elliptic 
character. The underlying constitutive relations, such as those for 
the velocity of a fluid phase, couple the variables across the govern-
ing equations in a strongly nonlinear manner. Consequently, one 
challenge in modeling large-scale flows through complex media 
is to honor such coupling without sacrificing numerical stability. 
Additional sources of complexity include the heterogeneity of the 
porous media, body forces, and the presence of wells. 

A rich collection of numerical treatments is used in practice to 
model such problems. For a review, see Aziz and Settari (1979). 
One approach is to seek methods that are tailored to resolving the 
physics within distinct regimes. With a priori characterization of 
how these regimes interact and when they occur, tailored methods 
can be combined and applied adaptively through the course of a 
simulation. A second approach is to seek methods that resolve a 
wide range of processes in a fully coupled manner. Robust non-
linear solvers are particularly important when regime transitions 
occur frequently and in a complex manner. Strong nonlinear physi-
cal coupling across a wide range of time scales poses challenges 
to both approaches; in the split-and-couple semi-implicit approach, 
severe restrictions on the timestep size usually arise, and while 
the fully coupled implicit approach has no stability restrictions, 
the resulting algebraic nonlinear systems may be difficult to solve 
(Aziz and Settari 1979). 

In fully implicit/fully coupled methods, all primary unknowns 
are treated implicitly, giving rise to a coupled nonlinear system of 
discrete equations that must be solved at each timestep. One attrac-
tive aspect of this approach is its unconditional stability, which is 
obtained at the cost of tight nonlinear coupling between parabolic 
and hyperbolic components. Two practical shortcomings of this 
approach continue to receive attention from the research commu-
nity [e.g., Gropp et al. (2001) and Keyes (2002)]. The first is that 
available solution methods for the discrete nonlinear systems may 
themselves not be unconditionally convergent. The second aspect 
is that, regardless of the technical details of the particular solution 
method, the computational effort required to solve large coupled 
systems can be significantly larger than that for decoupled, local-
ized computations, such as in a convergent step of a semi-implicit 
scheme. The practical implication of these two shortcomings is the 
use of timestep chops. With a try-adapt-try strategy, an attempt to 
solve for a timestep is made. If that fails within a specified amount 
of computational effort, the timestep is adapted heuristically and 
the previous effort is wasted.

This work focuses on exploiting fundamental understanding 
of implicit methods for oil recovery problems in order to devise 
nonlinear solution strategies that converge all the time while per-
forming computations only where necessary. More precisely, an 
iteration is devised so that, for any requested timestep, iterations 
are performed until either the solution is attained or the maximum 
allowable number of iterations is reached. In the latter case, the final 
iterate is a solution to a known positive timestep. The timestepping 
then continues from this solution. Moreover, the solution algorithm 
exploits the locality of concentration waves in order to reduce 
the computational effort required per iteration. Before developing 
these two contributions of continuation and localization, we review 
nonlinear solution methods used in current reservoir simulators. 
Throughout this discussion, we refer to two reservoir simulation 
problems described in detail in Appendix A. The first problem is a 
one-dimensional (1D) Buckley-Leverett problem with gravity, and 
the second is a two-phase compressible flow problem in 2D.

Current State of Nonlinear Solver Technology
Similar to the residual systems of Problems 1 and 2 introduced in 
Appendix A, general reservoir simulation implicit models result in 
nonlinear systems that must be solved at each timestep to obtain the 
new state. Current simulators rely on a fixed-point iteration, such 
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as a variant of Newton’s method, in order to solve these problems 
[see, for example, Aziz and Settari (1979), Deuflhard (2004), and 
Ortega and Rheinboldt (1970)]. For general problems, Newton’s 
method is not guaranteed to converge, and it is known to be sensi-
tive to the initial guess, which must be supplied somehow. In most 
reservoir simulators, the initial guess to the iteration is the old state. 
For small timestep sizes, this is a good approximation to the new 
state and, therefore, is likely to be a good starting point for the 
Newton iteration. For larger timesteps, however, this is less likely 
to be the case and the iteration may converge too slowly or even 
diverge. To illustrate why Newton’s method may fail in practice, 
we consider its origin followed by some examples.

Generalized View of Newton’s Iteration
At each timestep of an implicit simulation, given the current state, 
U n N∈R , and a target timestep size, �t > 0, we seek to obtain the 
new state, U n N+ ∈1 R , by solving the following nonlinear residual 
system:

R U t Un n+( ) =1 0; ,� ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

where the residual system of N equations is a unique and consistent 
mapping, R N N:R R→ . Newton’s method generates a sequence of 
iterates, U n+⎡⎣ ⎤⎦
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Newton’s iteration itself can be regarded as an explicit, first-
order timestepping scheme for a particular dynamic system. To 
see this, suppose that the Newton iteration index, �, is actually a 
continuous quantity and consider the following dynamic system:
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Using a first-order, explicit discretization in the continuous 
quantity �, the discrete form of the dynamic system is

U U R U t Un n n+ + + − +⎡⎣ ⎤⎦ − ⎡⎣ ⎤⎦ − ⎡⎣ ⎤⎦
1 1 1 1 1= ; ,

� � �
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which corresponds to Newton’s method (Eq. 2). Thus, Newton’s 
method approximates the derivative of the new state with respect 
to the embedded time, �, using a first-order finite difference with a 
unit step size, �� = 1. The forcing function of the dynamical system 
(Eq. 3) is the inverse of the Jacobian acting on the residual evalu-
ated at the old embedded step, �. Note that the embedded time, �, is 
different from the physical timestep, �t, which is fixed throughout 
Newton’s iteration. Because the forcing function is evaluated at 
the old embedded step, Newton’s iteration is an explicit first-order 
discretization of the system in Eq. 3. The embedded timestep, ��, 
is a step along the field defined by the system of Eq. 3, which we 
refer to as the Newton flow. At the solution of the target timestep, 
the forcing function is zero, so the solution is a stable fixed point 
of the Newton flow. Because explicit first-order timestepping may 
be unstable (has a timestep restriction), Newton’s iteration may not 
converge, even though the continuous Newton flow is well-behaved. 
On the other hand, for general problems, when Newton’s method 
does converge, there are no guarantees on how fast it will do so.

In practice, a convergent Newton iteration for a given timestep 
size may be too slow, and it becomes necessary to stop if a 
prescribed maximum number of iterations is reached before con-
vergence is achieved. In such cases, the iterates are discarded 
and the process is repeated using a smaller target timestep. It is 
not known rigorously which smaller timestep could be used with 
success. Several heuristics are often employed to attempt this; 
nevertheless, all such methods fall into a strategy of try, adapt, 
and try again. It is difficult to derive rigorously a relation between 
timestep size and convergence rate because that would ultimately 
involve a stability analysis of the system in Eq. 3, which is both 
highly problem-dependent and analytically intractable for realistic 
problems. Moreover, such an analysis is likely to generate itera-
tions that needlessly follow the Newton flow too closely, resulting 
in a highly inefficient iteration.

Examples Illustrating Challenges 
Encountered by Newton’s Method
To illustrate the pathologies that Newton’s method may run into in 
practice, we consider examples of Problem 1, which is described in 
Appendix A. We apply a fully implicit discretization on a discrete 
domain with two cells, N = 2. The corresponding residual is regarded 
as a function in 2D saturation space. The first dimension is the range 
of possible saturations in the first cell S1 [0,1]∈ , and the second 
dimension is the range in the second cell S2 [0,1]∈ . We compare the 
Newton iterations with the Newton flow in this 2D space for two 
cases. The first is a horizontal case (Ng = 0), and the second is a 
down-dip problem (Ng = −3). In both cases, we use a unit injection 
saturation, Sinj = 1, and a uniform zero initial saturation, Sinit = 0.

Figs. 1a and 1b illustrate a Newton process (series of straight, 
thick blue arrows) for both cases starting from the old state Sn = (0, 

 (a) Horizontal displacement Ng  tnemecalpsid pid-nwoD )b( 0 = Ng = −3 

Fig. 1—Residual norm contour lines, high-fidelity Newton flow integral paths (dotted), and Newton iterations (arrows) for two 
cases of Problem 1.
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0) for a timestep of unity. The contour lines on the figures are those 
of the 2-norm of the residual, R S t SD

n; ,
2

�( )  over S ∈ ×[0,1] [0,1]. 
The thick, curved black lines are integral numerical solutions of 
Eq. 3 (i.e., the Newton flow) emanating from various starting 
points on the boundary of the 2D space. These integral curves are 
obtained using a high-fidelity numerical integrator (variable-order 
Runge-Kutta with automatic step control), and they illustrate the 
continuous paths that Newton’s method attempts to approximate 
should it have been started from these various initial guesses.

For the horizontal case, Fig. 1a shows that Newton’s method 
converges to the solution Sn+1 = (0.5, 0.45) in two iterations. 
Moreover, the Newton-flow integral curves are generally smooth 
curves, all of which flow toward the solution. Fig. 1b, which is for 
the down-dip case, indicates that Newton’s method diverges when 
started from the (0, 0) point, with the iterates alternating between 
the points (1, 0) and (0, 1). For this case, the Newton-flow integral 
curves are not smooth, and, for saturation loci where the upwind 
directions change, there are clear kinks along the Newton integral 
curves. The smooth region around the solution, (0.83, 0.9), is 
considerably smaller than that for the horizontal case in Fig. 1a. 
In theory, while following the Newton flow more accurately can 
lead to increased robustness, the computational efficiency of doing 
so may be unjustifiable. In order to manage this tradeoff between 
following the Newton flow and arriving as quickly as possible at 
the solution for the target timestep, several variants of Newton’s 
method have been devised. These variants attempt to safeguard 
the iteration by improving its ability to follow the Newton flow 
in some sense.

Safeguarded Newton Iteration
Given the possibility of divergence of Newton’s method for general 
problems, a number of variants have been devised to damp the 
Newton updates. All of these methods, which are said to safeguard 
the iteration, can be viewed as different ways to specify a diagonal 
matrix � = , ,1diag � �� �… N( ) in a safeguarded Newton iteration, 
which we write in the general form as

U U R U t Un n n n+ + + − +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ − ⎡⎣ ⎤⎦(1 1 1 1 1= ; ,
� � �

�J � )).  . . . . . . . . . . . (5)

Comparing the general safeguarded iteration (Eq. 5) with the 
classic Newton iteration (Eq. 2), the diagonal weights, ��i, can 
be interpreted as local timesteps in the explicit integration of the 
Newton flow. The standard Newton iteration selects all of these 
weights to be unity, and subsequently, in cases where the underly-
ing Newton flow changes rapidly, the iteration may not converge. 
Two classic approaches to safeguard Newton’s method are the 
line-search and trust-region algorithms. See Ortega and Rheinboldt 
(1970) and Deuflhard (2004) for examples. In these methods, all 
entries of the diagonal are identical, implying that the Newton 
direction is simply scaled by a constant factor. The choice of the 
scaling factor is dictated by the rate of change in the residual 
norm along the Newton direction or within a neighborhood about 
the current iterate.

In commercial reservoir simulators, heuristic strategies have 
also been devised to safeguard Newton’s method. Such strategies 
select the diagonal scaling entries on a cell-by-cell basis using 
physical arguments. In practice, these heuristics are known to 
improve convergence (larger timestep sizes can be converged 
from an initial state). Most commonly employed heuristics share 
a hypothesis, which may be motivated by the residual contours in 
Fig. 1 and the shape of common fractional flow curves (e.g., Fig. 
A-2). The hypothesis is that the nonlinearity of the residual in 
some sense is dictated by the structure of the flux function in each 
cell (Jenny et al. 2009). That is, suppose that a nonlinear Gauss-
Seidel iteration is applied to the residual system as a whole. Then, 
for each Gauss-Seidel iteration, the residual in each cell must be 
solved sequentially. To solve each of these single cell nonlinear 
residuals, we may apply a scalar Newton process, obtaining the 
saturation in the current cell, assuming all other cell saturations are 
known. These scalar Newton iterations need to be safeguarded by 
some scalar damping protocol (Kwok and Tchelepi 2007). If this 

protocol ensures cellwise convergence of a Newton iteration, then 
the outer Gauss-Seidel iteration at least has a hope of converging. 
So, if the same scalar damping protocols are also applied to the 
saturation variables on a cell-by-cell basis in the context of system 
Newton updates, then that, too, is more likely to converge. Inspect-
ing Fig. A-2 and Fig. 1 from the preceding section, we can deduce 
that saturations around endpoints and inflection points produce 
particularly sensitive Newton directions. The idea is to apply a cell-
by-cell (diagonal) damping factor to limit large changes around 
such sensitive physics boundaries. 

The following is a sample list of heuristic scalar damping 
protocols for Newton methods in black-oil simulation (Naccache 
1997; Schlumberger 2008): 

• Eclipse Appleyard (EA): For saturations only, cell by cell, 
scale back changes from immobile to mobile so that they are barely 
mobile. For changes from mobile to immobile, scale back to barely 
mobile. Ensure saturations are between 0 and 1. 

• Modified Appleyard (MA): Do the same as in Method 1, and 
require that no saturation change in a cell is greater than some 
small amount in magnitude, which is usually chosen to be 0.2. 

• Geometric penalty (GP): Do the same as Method 1, and 
require that no saturation change in a cell is greater than 20% of 
the original saturation. 

The focus of these cellwise strategies is to avoid large Newton 
corrections to saturation variables, as may arise when crossing 
phase boundaries, or other pathological properties of the fractional 
flow curve. Next, we examine practical examples of the behavior 
of these methods.

State-of-the-Art Solvers
We observe empirical evidence over a suite of numerical experi-
ments conducted using cases of Problem 2, which is described in 
Appendix A. For various cases of imposed well conditions and ini-
tial saturation distributions, the following experiment is performed. 
A sequence of timestep sizes is fixed, and, for each timestep 
size, the residual is solved using each of four protocols: Standard 
Newton (SN), EA, MA, and GP. Each target timestep is solved 
using the old state as a starting guess. The number of iterations is 
recorded, and the convergence characteristics are reported. Note 
that these results correspond to using each of the four methods to 
solve a full simulation in one timestep.

In a representative case, the initial condition has oil on the 
lower half of the domain and water above. A rate-controlled water 
injector is applied in the lower left corner, and a pressure-control 
producer is placed in the upper right corner.

Fig. 2 shows the iteration count profiles obtained. As is typical 
of problems involving two or more physical driving forces, SN 
and EA diverge (do not converge no matter how many iterations 
are spent) for timesteps larger than 0.5 days. The MA and GP 
strategies are convergent over the entire tested range of step sizes. 
The key to this discussion is that, while strategies such as MA 
and GP lead to convergent iterations for this setting, the number 
of iterations required grows with the requested timestep size. In 
practice, a maximum number of iterations is imposed by the user 
for efficiency considerations. So, while MA may well converge in 
150 iterations, if the maximum allowable is 10, then the iteration 
is halted. The 10 iterations are wasted, and a heuristic must be 
used to scale back the timestep size to one for which MA may 
converge in less than 10 iterations. It is this strategy of try, adapt, 
and try again that often brings a simulation of a complex model 
with several physical transitions to a halt.

Objectives
Our approach develops two ideas to address nonlinear solver issues 
in general-purpose reservoir simulation. The first idea devises an 
iterative solution process for which each iterate is a solution to a 
timestep that is smaller than the target step. The implications of 
this are that (1) convergence is always guaranteed, (2) timestep 
chops do not involve wasted computation, and (3) timestep selec-
tion for convergence considerations is no longer necessary. The 
second idea addresses the fact that solutions to larger timesteps 
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may require more iterations. Exploiting the fact that most reservoir 
simulation problems involve traveling waves, the second idea, 
allows each iteration to involve considerably lower computational 
cost than would be necessary for a standard Newton iteration. It 
is a method of localizing computation.

Associating a Timestep Size to Iterates—A 
Continuation Algorithm on Timestep Size
To illustrate our approach, we consider the nature of solutions to 
reservoir simulation timesteps. Well-posed reservoir simulation 
residuals have a unique solution for each timestep. The solution 
needs to be unique only within a prescribed domain. For example, 
in a cell, saturations are bounded by zero and unity; pressure is 
positive, etc. Let U N

0 ∈R  denote such a discrete solution state 
vector for a particular time. Then, independently for every pos-
sible timestep from this state, �t ≥ 0, there corresponds a solution 
U N∈R  that satisfies R(U, �t; U0) = 0, where R is the vector of 
discrete residual equations. All such pairs of solution and corre-

sponding timestep, (U, �t), can be interpreted as points defining 
a curve in an N+1-dimensional space, where N is the number of 
residual equations and the additional dimension is the timestep 
size, �t. The existence and uniqueness of these points can be shown 
to imply that they form a continuous curve, emanating from the 
initial point with a timestep size of zero, (U0, 0). Furthermore, this 
curve has a strictly positive gradient along the timestep dimension 
because otherwise uniqueness would be violated. The curve of 
points satisfying these requirements for a particular initial state, 
U0, is called the solution path emanating from that state. 

For illustration, consider the solution path of a nonlinear 
problem in a single state unknown, that is R(Sn+1, �t; Sn). Because 
only one state is unknown, we may plot the solution path in the 
two dimensions, Sn+1 and �t. In a typical reservoir simulation 
problem, there may be millions of unknowns, and each would be 
represented by a dimension. Fig. 3a illustrates a solution path to 
this hypothetical problem. The solution path emanates from the 
initial point (Sn+1 = Sn, �t = 0), and continues to the target timestep, 

Fig. 2—The number of iterations required to solve a sample timestep size using SN, EA, MA, and GP.

(a) Newton’s method illustrated on a solution path. All iterates are 
evaluated at the target timestep, starting from the old state as  
an initial guess. 

(b) Illustration of three iterates in the CN algorithm. 
The first two iterates are chosen along tangent vectors. The third 
tangent leads to points outside the convergence tolerance. A 
safeguard Newton step is performed. 

Fig. 3—Solution-path diagrams and solution methods depicted for a problem with a single time-dependent unknown S. The old 
state, for a zero timestep, �t = 0, is Sn, and the solution at the target timestep, �ttarget, is Sn+1.
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�ttarget, augmented with its solution, Sn+1, in this 2D space. Notice 
that, in this illustration, the solution path always moves forward 
in timestep size and never folds on itself. Each point on the path 
is a pair of a solution state and a timestep size.

Also shown in Fig. 3a are the standard Newton steps (curved 
dotted lines), which attempt to find the solution at the target 
timestep. With a classic Newton process, the old state is projected 
to the target time tn+�ttarget as an initial guess. A sequence of iter-
ates is obtained, all evaluated using the target timestep size. A 
convergent Newton iteration provides a final iterate that is close 
enough to the solution path at the target timestep size. Should too 
many iterations go by without convergence, all iterates are wasted 
and the challenging task of selecting a smaller timestep must be 
addressed. 

In order to overcome this challenge, we design a numerical 
continuation algorithm (Allgower and Georg 1980, 2003; Shroff 
and Keller 1993; Watson et al. 1987) that proceeds from the 
initial state from which the solution path emanates. The process 
generates a sequence of iterates along the path in the augmented 
N+1-dimensional space, climbing toward the target timestep size. 
Subsequently, each iterate would be related to a known, smaller 
timestep. Should too many iterations go by before the target 
timestep is attained, the final iterate is associated with a solution 
for a smaller known timestep, from which we may continue the 
simulation.

High-Level View of the Continuation-Newton 
(CN) Algorithm
We develop an alternative iteration to Newton’s method in which 
the iterates are pairs of the unknown state augmented with a cor-
responding timestep. The iteration starts from an initial point con-
sisting of the initial state and a timestep of zero. The intent of the 
iteration sequence is to follow along the solution path toward the 
solution of the target timestep size. Because we are interested in the 
solution for a target timestep, we hope to avoid following the solu-
tion path (in the N+1-dimensional space) too closely because that 
would be computationally wasteful. For this reason, we develop a 
convergence neighborhood around the solution path so that points 
within the neighborhood are deemed close enough to the solution 
path at their timestep level. The iterates can follow the path more 
loosely without sacrificing their proximity to the solution for their 
timestep component. By parameterizing the solution path with a 
single parameter along its tangential coordinates, we develop an 
ability to compute the tangent to the solution path at any point in 
the augmented space. These tangent computations are developed 
in detail in the next section.

Here, we outline the CN process using the single-unknown 
hypothetical example discussed in the preceding section: R(Sn+1, 
�t; Sn). 

Fig. 3b illustrates the proposed algorithm pictorially on the 
hypothetical solution path similar to that in Fig. 3a. The solution 
path emanates from the initial point p0 = (Sn, 0). We want to find 
the solution for a target timestep �ttarget. The proposed algorithm 
defines a convergence neighborhood around the solution path so 
that points, pint = (Sint, �tint), inside the neighborhood are deemed 
to be close enough solutions for their timestep component, �tint. 
That is, either Sint is a solution to a timestep of �tint or it is a good 
starting guess for an SN iteration starting from Sint for a timestep 
of �tint. Starting from the initial point, p0, from which the solu-
tion path emanates, we can compute the N+1-dimensional tangent 
vector, �̂1. An appropriate step length along the tangent vector is 
selected such that the next iterate remains within the convergence 
neighborhood. In Fig. 3b, this iterate is denoted p1. The tangent 
update is linear, p p1 0 1= + ��̂ , where � ≥ 0 is called the tangent 
step length. Note that because tangents �̂i and all iterates pi are 
augmented variables in both the state and the timestep size, these 
iterations evolve timestep size as well as the solution. Similarly, we 
may repeat this process to obtain the next point p2. At this point, 
which is near the boundary of the convergence neighborhood, we 
find that the next tangent step length, which keeps the next iterate 
within the convergence neighborhood, is too small or zero. In this 
case, the CN algorithm applies a Newton correction step, N1, as 

illustrated in Fig. 3b. This Newton correction is evaluated at the 
current timestep size and brings the iterates closer to the solution 
path at point p3. The iterate, p3, is guaranteed to be close to the 
solution path because the convergence neighborhood is chosen 
so that it is contained within the contraction region of Newton’s 
method. We can continue with tangent steps thereon. 

By construction, the sequence of iterates, pi, are all close-
enough solutions to their associated timesteps. The guarantee of 
convergence for all times is also supported by the choice of the 
convergence neighborhood. As a result, any necessary correc-
tive Newton steps, Nj, always contract toward the solution path. 
Because the initial guess to such corrective steps is already a 
close-enough solution by construction, a single Newton step can 
be guaranteed to reduce the residual. 

In practice, the CN process can be continued until either the 
target timestep size is attained or the maximal number of iterations 
allowed has been expended. In the latter case, the final CN iterate 
is a close-enough solution to its corresponding timestep size. We 
can accept this solution and its timestep size and continue onto the 
next simulation timestep. Subsequently, no timestep-chop selection 
is ever necessary and no computational effort is wasted.

We provide the details of the proposed CN algorithm in 
Appendix B. Next, we develop the methods to compute tangent 
updates and to select step lengths that lie within a convergence 
neighborhood.

Computing Tangents to Solution Paths
The key computational expense of a CN iteration is in evaluating 
the tangent vectors to the solution path. The cost is precisely that of 
performing a single Newton iteration and involves the solution of the 
Jacobian matrix. We derive this computational method by first math-
ematically parameterizing solution paths along one tangential coordi-
nate, � ≥ 0. By substituting this parameterization into the residual and 
requiring a zero residual along the curve, we derive the equations of 
motion that define the curve. These equations then provide a compu-
tationally attractive method for computing the tangent.

The Equations of Motion Along a Solution Path. With the 
assumption that the N-dimensional residual equations have a 
unique solution for every timestep, we can parameterize the solu-
tion and timestep pairs along a single scalar � ≥ 0. That is, the 
N-dimensional state solution vector and corresponding timestep 
form an N+1-dimensional space, and the components are consid-
ered as functions of a single scalar, �, so that any point can be 
written as p(�) = [U(�), �t(�)]. We want the solution path in the (U, 
�t) space to emanate from the old state of a given timestep. So for 
� = 0, we have the point p0 = (U0, 0), where U0 is the initial state 
vector of the timestep. We write the residual equations in terms of 
this parameterization as

R U t U n� �( ) ( )⎡⎣ ⎤⎦, ; = 0� .  . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

The total derivative of the residual vector with respect to the 
scalar � prescribes the tangent to level curves in the residual value. 
Because the particular level curve of interest is the zero residual 
level curve (the solution path), we can write

0 = =
dR

d
J

dU

d

R

t

d t

d� � �
+ ∂

∂�

�
,  . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

where J is the same N×N Jacobian matrix that would have been 
used in a Newton method except that it is now interpreted as a 
function of timestep as well as of state. That is, while within a 
Newton iteration, the Jacobian is always evaluated using the tar-
get timestep, here the Jacobian may be evaluated using any other 

timestep size. The Jacobian’s elements are defined as J
R

Ui j

i

j
, =( )

( )

( )

∂
∂

, 

and the N-dimensional vector 
∂
∂

R

t�
 in Eq. 7 is the derivative of the 

residual vector with respect to timestep.
Because the initial point on the zero level curve is known (i.e., 

the solution from the previous timestep), the initial condition for 
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the system is well defined. Combining this initial condition with 
Eq. 7, we obtain

J U t U
dU

d t
R U t U

d t

d
U

, ; , ; = 0

( = 0) =

0 0�
�

�
�( ) + ∂

∂
( )

� �
� UU

t
0

( = 0) = 0� �

⎧

⎨
⎪⎪

⎩
⎪
⎪ .  . . . . . . . . . . . (8)

Eq. 8 describes the dynamics of motion along the solution path 
in (U, �t) space emanating from the initial point (U0, 0). In this 
context, the parameter � ≥ 0 is the arc length along the solution 
path in its tangential coordinates. Geometrically, the N+1-dimen-

sional vector �
� �

= ,
dU

d

d t

d

�⎛
⎝⎜

⎞
⎠⎟  is the tangent to the residual level 

curves. When the tangent is evaluated at a point on the solution 
path, which is the zero residual level curve, it is a tangent to the 
solution path itself.

The solution of a nonlinear residual for any timestep can be 
computed by numerically integrating the corresponding initial-
value problem given by Eq. 8 up to � = �* for which the timestep 
is equal to the target value [i.e., �t(�*) = �ttarget]. This, however, 
is not the objective. We are interested in reaching the solution for 
the target timestep as quickly as possible. Consequently, we should 
follow the solution path in (U, �t) space only loosely and with as 
little computational effort as possible.

Closure and Tangent Computations. Eq. 8 is underdetermined; 
we have N equations for N+1 unknowns. The additional unknown 
is the timestep size. Thus, an additional equation is necessary to 
close the system. Without further insight into the problem, we 
could choose one of several alternatives to close the system as long 
as the resulting problem is consistent. One example is to require 
that the norm of the tangent be unity [see, for example, Allgower 
and Georg (1980, 2003) and Shroff and Keller (1993)]; that is,

dU

d

d t

d� �
, = 1

�⎛
⎝⎜

⎞
⎠⎟ . Another is to enforce some sort of inequality 

constraint on some elements of the tangent. Not only are such 
alternatives clearly computationally undesirable, but they also do 
not exploit any inherent properties of the physics. In this particular 
setting, the additional equation could be chosen to say something 
about the rate of change in timestep size with respect to arc length 
along the solution path. Something certain about solution paths 

to well-posed problems is that 
d t

d

�

�
> 0. This is the case because 

otherwise uniqueness is violated. 
Enforcing this condition algebraically is quite simple. We 

require that
d t

d
C

�

�
= > 0, where C is any positive constant. To 

compute the N+1-dimensional tangent vector, we solve

J
R

t

dU

d
d t

d

C

∂
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⎡

⎣

⎢
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⎤

⎦

⎥
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⎢
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⎤

⎦

⎥
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⎡

⎣
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�0 1
=
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�

⎤⎤

⎦
⎥ ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)

where the Jacobian, J, is an N×N matrix; the timestep derivative 

of the residual, 
∂
∂

R

t�
, is an N-dimensional vector; and the tangent 

component along timestep size, 
d t

d

�

�
, is a scalar. Notice that the 

(N+1)×(N+1) system in Eq. 9 is always solvable because the Jaco-
bian itself is assumed to be always solvable. The Jacobian is well 
conditioned in the vicinity of the solution path. This is because 
all solution points are stable fixed points of the Newton flow for 
a fixed timestep and, moreover, we already know that the solution 

to the timestep size tangent component, 
d t

d

�

�
, is C > 0.

Scaling the Tangent Does Not Require Magic Constants. The 
positive constant, C, is chosen arbitrarily. The specifi c choice is 
inconsequential because we have the unique, consistent direction 

of the tangent vector and we can select any length along it. To be 

precise, we can normalize the computed tangent, �
� �

= ,
dU

d

d t

d

�⎛
⎝⎜

⎞
⎠⎟ , 

as follows:

� ← −⎛
⎝⎜

⎞
⎠⎟

−C J
dR

d t

T

. ,11

�
,

�̂
�

�
← .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10)

This can always be done because C is positive, and so the tangent 
norm is bounded away from zero. This normalization is valid even 
when the solution is at a steady state. Eq. 10 provides a compu-
tationally attractive way to compute level curve tangents at points 
near the solution path. At such points, the Jacobian is numerically 
well conditioned because it is evaluated in the vicinity of a unique 
solution and it has the same structure as standard reservoir simula-
tion Jacobian matrices. Algorithm 2 in Appendix B prescribes the 
details of computing the tangent vector at a point (U, �t) close to 
the solution path emanating from the point (Un, 0).

Defining a Convergence Neighborhood
A key component of the CN algorithm is having a quantitative 
measure of proximity to the solution path in the augmented space. 
A tight measure results in iterates that are accurate solutions but 
may result in poor computational efficiency because the solution 
path in the (U, �t) space is needlessly traced in detail. On the 
other hand, a loose tolerance may produce iterates that are farther 
away from the solution, requiring more Newton corrective steps. 
Accordingly, one objective is to select this proximity measure so 
that points within the neighborhood around the (U, �t) solution 
path provide good starting points for a Newton corrective process 
for their corresponding timestep. A second objective is to select 
this neighborhood so that there is a computationally inexpensive 
procedure to test whether a given point is within it or not.

We denote the solution path emanating from p U N
0 0

1= ,0( ) ∈ +R  
as the set of points C= , , 0{ ( ) [ ( ) ( )] : [ ( ) ( ); ]p U t R U t U� � � � �= � �  
= 0,� ≥ 0}.

Three measures and their corresponding convergence neighbor-
hoods, N , maybe defined as follows:

• Residual or material-balance norm. A point is in the neighbor-
hood provided that its residual norm, or material-balance error, is 
less than a specified tolerance; p ∈N  if and only if R p( ) ≤ ε tol.

• Absolute or maximum change tolerance estimates. At any 

point (U, �t), the norm of the first Newton step, − ( )−J R U t U n1 , ;� , 

toward the solution path can be related to the norm of the absolute 
error. In particular, it is a linearized estimate that becomes more 
accurate as a measure of absolute error within the vicinity of the 
solution path. 

• Jacobian-matrix norm or curvature estimates. Within the con-
vergence basin of the Newton flow, the Jacobian matrix induces 
a Lipschitz property on the residual. That is, within the neighbor-
hood of the solution, the curvature of the residual is bounded. 
Using this property, a computational estimate of a Kantorovich 
condition on the Jacobian-matrix norm can be used to estimate 
whether the point in question is a good point to start a Newton 
iteration [see, for example, Deuflhard (2004) and Ortega and 
Rheinboldt (1970)]. 

Residual-based measures require the computation of the resid-
ual only, and they are accurate measures of proximity if one is close 
to the solution. Residual measures alone, however, do not neces-
sarily guarantee favorable convergence rate properties. Jacobian 
matrix norm measures invariably require computing the Jacobian 
and provide estimates of the local convergence properties of a 
Newton iteration. They do not measure proximity directly, how-
ever. Absolute-error estimates are the most computationally expen-
sive, requiring the computation of a Newton step. Absolute-error 
measures can combine more-accurate measures of both proximity 
to the solution and convergence-rate properties. A combination of 
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these three broad types of measures may be used to ensure robust-
ness while trading off computational performance. Note that the 
strictest criterion is to use a residual tolerance so that every point 
in the neighborhood of the augmented solution path is itself an 
acceptable solution for the residual equations. While such a strict 
criterion will always generate actual solution iterates, it may lead 
to needlessly following the solution path too closely, and that can 
increase the number of continuation steps per target timestep. In 
this work, we apply a residual tolerance criterion only. Algorithm 
3 in Appendix B describes the details of testing whether a given 
point (U, �t) is within the convergence neighborhood about the 
solution path emanating from (U0, 0).

Step Length Selection Along Tangents
Another component of the CN algorithm is the selection of an 
appropriate step length along a tangent vector. The CN update is 
written as

U

t

U

t
k k

U

t
� �

�

⎛
⎝⎜

⎞
⎠⎟

←
⎛
⎝⎜

⎞
⎠⎟

+
⎛

⎝
⎜

⎞

⎠
⎟

+1

�
�

�

ˆ

ˆ
,   . . . . . . . . . . . . . . . . . . . . . . . . (11)

where � is the positive step length.
A larger step length results in a larger timestep advancement 

because the timestep component of the tangent, �̂�t, is always posi-
tive. This implies a higher computational efficiency as the timestep 
advancement per tangent computation increases. On the other hand, 
a larger step length also implies a larger absolute error from the 
solution path. Using continuity around solutions, theory guarantees 
that, for small step lengths from points on the solution curve, any 
residual tolerance may be satisfied. In practice, CN iterates are not 
exactly on the solution path, however, and, for a given tangent, there 
may be no positive step length that results in an acceptable point that 
lies within the convergence neighborhood,pk+ ∈1 N . In such cases, 
the step length selection algorithm must trigger Newton correction 
steps. This switch to Newton corrections is dictated by the nature of 
the physics being modeled. For example, slowly transient solutions 
can be stepped through with larger tangent step lengths, while faster 
transients may require shorter tangent steps.

In practice, a minimal step length, �min, is chosen as a parameter. 
Note that, from Eq. 11, for a given step length �, the corresponding 
updated timestep size is simply � �t k

t+ ��̂ . We can choose �min to 
satisfy a minimal timestep advancement per tangent step, �tmin.

There may be many step lengths that are larger than the minimum, 
� > �min, that keep the new iterate within the convergence neighbor-
hood. In this work, the objective of the step length algorithm is to 
select the largest such step length in order to maximize the timestep 
advancement achieved per continuation step. Because constrained 
univariate optimization is generally more efficient than an uncon-
strained counterpart, we also set a maximal step length parameter, 
�max. Choices for the maximal step length parameter, �max, can be made 
in several ways. One approach could be to choose the smallest step 
length that makes all updated normalized variables reach their physical 
range. Another approach, which is used throughout the examples in 
this work, is to select it so that the tangent timestep update satisfies a 
maximal timestep advancement per tangent step, �tmax.

The univariate optimization problem for the tangent step length 
can be expressed as

maximize

subject to

�

��pk
k+ ∈ˆ N ,

� � �∈[ ]

⎧

⎨
⎪

⎩
⎪

min max,

.  . . . . . . . . . . . . . . . . . . . . . . . . . (12)

In the examples in this work, we apply a derivative-free back-
tracking algorithm to solve this problem. The details are presented 
in Algorithm 4 in Appendix B.

Illustrative Examples Using CN
We consider two illustrative cases of Problem 1, which is described in 
Appendix A. The first case is a horizontal piston-like displacement, 

and the second includes gravity effects and exhibits countercur-
rent flow. In both cases, the injection saturation is unity, Sinj = 1, 
and the relative permeability functions are quadratic with endpoints 
of zero and one.

Horizontal Buckley-Leverett Displacement. For this case, the 
endpoint mobility ratio M0 is chosen as 10; the gravity number 
Ng is chosen as 0 for a horizontal problem; the initial saturation, 
Sinit, is zero; and N = 150. 

We illustrate the CN concepts by applying a step of the algo-
rithm for this problem, starting from a simulation time of 0.5. At 
this time, the saturation state, denoted S0, and the tangent update 
�̂ 0 computed using Algorithm 2, are presented in Fig. 4.

The CN starting iterate to solve a target timestep from this 
time consists of the saturation profile, S0, in Fig. 4, augmented 
with a timestep size of zero; that is, p0 = (S0, 0). The solution 
path emanates from p0 and is in an N+1-dimensional space. The 
tangent to the solution path at the starting point is the state update 

component plotted in Fig. 4, augmented with 
d t

d

�

�
, which in this 

case is 0.336. The next CN iterate is a step from the starting point 
along a linearly scaled update of the tangent. This update is written 
as p p1 0← + ��̂ , where the scalar step length, �min ≤ � ≤ �max, is 
to be selected by Algorithm 4. 

We illustrate the qualitative nature of this tangent update using 
two different step lengths, � = 0.015 and 0.089. For each step 

length, the corresponding tangent-update timestep size is �
�

d t

d

�
, 

and, in this case, these are 0.005 and 0.03. Moreover, defining the 

Courant-Friedrichs-Lewy (CFL) number as 
�

�

t

x
f Smax | |′( ) , these 

step lengths correspond to 2.25 and 13.35 CFL. Figs. 5a and 5b 
show the initial saturation state and the updated states obtained 
by taking a single tangent step using each of the two selected step 
lengths. The solutions for each of the two timestep sizes, which 
correspond to the two step lengths, are also shown in Figs. 5a and 
5b. In these figures, the solutions are obtained by a Newton pro-
cess, which requires several iterations, whereas the tangent steps 
are single iterates in the CN algorithm. Qualitatively, it is observed 
that, as the step length is increased, the tangent step becomes a 
worse approximation of its corresponding solution, as expected. 
The objective is to choose the largest step length that still gives a 
good approximation (i.e., is close to the solution path).

Fig. 6 shows the trend in the residual norm for various choices 
of step length along the tangent. The figure also shows the residual 
norms obtained using the old state as an initial guess for the cor-
responding timestep size of the continuation step length. Within 
smaller step length ranges, there is higher confidence in the tangent 
update solution than in the old state. The step-length selection 

Fig. 4—Starting iterate and tangent update for a 1D Buckley-
Leverett problem with no gravity.
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algorithm attempts to select the largest step length that retains a 
residual below a certain tolerance. For low residual tolerances, 
which are typically used to define a convergence neighborhood, 
the continuation tangent step affords a timestep advancement that 

is (1) known a priori through the relation � �
�

t t
d t

d
1 0← + �

�
, and 

(2) always closer to the solution than the old state is.
In terms of the overall performance of CN for a single timestep, 

Fig. 7a shows the number of iterations required to solve a set of 
different target timestep sizes ranging up to a size corresponding 
to more than 440 CFL. For each target timestep size, starting 
from the simulation time 0, the iterations are performed using the 
(1) Eclipse-Appleyard-Newton approach, (2) modified-Appleyard-
Newton method, and (3) the proposed CN algorithm. In Fig. 7a, 
we show the split between the number of iterations taken in CN 
tangent steps and in CN Newton corrections.

The EA Newton algorithm does not converge for any of the 
timestep sizes attempted. Moreover, while in general the CN and 
MA approaches are expected to perform on par, in this case the 
CN algorithm requires fewer overall iterations. This is the case 

because the additional dimension of the tangent update, 
d t

d

�

�
, 

provides a temporal scaling regarding the range of validity of an 

update, whereas scaling an MA Newton step never influences the 
timestep that it attempts to solve. Fig. 7b shows the number of 
residual evaluations required to converge a timestep by each of 
the methods. Owing to the step length search component of the 
CN algorithm, it requires more residual evaluations. The precise 
number required is bounded by the maximum allowed backtrack-
ing steps per tangent step. In this case, they were limited to five. 
Note that, although in this case the proposed algorithm performs 
on par with a state-of-the-art solver, each of the CN iterates is 
associated with a timestep size. Subsequently, in return for a few 
additional evaluations of the residual, the CN algorithm does not 
require timestep chops, nor will it waste any iterations over the 
course of an entire simulation.

Down-Dip Buckley-Leverett Displacement. For this case, the 
endpoint mobility ratio, M0, is chosen as 0.5, and the gravity num-
ber, Ng, is chosen as −5 for a down-dip problem. The number of 
gridblocks used is N = 150. The initial condition has a saturation 
of 1 up to a distance of 0.34 and a saturation of 0 elsewhere.

We consider a single timestep starting at the time of 0.1, and 
we illustrate the components of a single CN iteration. The current 
saturation state and the computed tangent update are shown in 
Fig. 8. In this case, countercurrent flow of the two phases results 

 )b( )a(

Fig. 5—For a particular time, the current state is depicted with circle markers, the tangent update with star markers, and the 
actual solution with square markers. This is presented for two different continuation step lengths.

Fig. 6—Residual norms for various step lengths along a single tangent.
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in negative components of the tangent vector. Moreover, the dis-
placement involves spreading wave portions. For two step lengths 
corresponding to timestep sizes of 0.001 and 0.006, Figs. 9a and 
9b show the initial state, the tangent iterate, and the corresponding 
complete solution for the timestep. Defining the CFL number for 

this problem as 
�

�

t

x
f Smax | |′( ) , the timesteps correspond to 0.7 

and 4.2 CFL. Qualitatively, the linear tangent updates with large 
step lengths are worse approximations in the sense that they display 
sharp changes in saturation.

Fig. 10 shows the relationship between the computed residual 
norm and increasing step length. Once again, for smaller residual 
tolerances, the tangent approximations provide better estimates 
than the old state.

Figs. 11a and 11b show the overall performance for various 
timesteps from the start of the simulation. The largest timestep 
size tested is 0.2, which corresponds to a CFL number of 140. In 
this case, the EA Newton method converges only for the smallest 
timestep size. Moreover, beyond a timestep size of 0.04, corre-
sponding to a CFL number of 30, the CN algorithm requires more 
iterations than the MA Newton method. This is because the solu-
tion involves a spreading wave that influences the entire domain.

(a) Number of Jacobian evaluations and linear solves  
required for convergence using CN and modified-  
Appleyard-Newton methods. 

(b) Number of residual evaluations required for  
convergence using CN and modified-Appleyard-  
Newton methods. 

Fig. 7—Convergence characteristics of the CN method compared to the modified Appleyard-Newton method.

Fig. 8—A starting point for a continuation timestep and the 
corresponding initial tangent vector.

 )b( )a(

Fig. 9—For a particular time, the current state is depicted with a solid line, the tangent update with a dotted line, and the actual 
solution with a dashed line. This is presented for two different continuation step lengths.
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Summary
The CN algorithm evolves the residual equations in the augmented 
(U, �t) solution space, providing iterates that are solutions to 
known timestep sizes. Subsequently, whenever a CN iteration is 
terminated, we obtain either the solution to the target timestep or 
a solution to a smaller known timestep. The rate of convergence 
is empirically shown to be on par with that of state-of-the-art 
safeguarded Newton methods whenever such schemes converge. 
Qualitatively, the number of iterations required for convergence 
by both the variants of Newton’s method and the CN scale with 
the dimensionless target timestep. This is because both iterations 
exploit linearized local wave propagation speed information. The 
chief difference is that, while Newton’s method is oblivious to 
the nature of the time evolution of the solution within a timestep, 
the CN algorithm exploits the evolution of the discrete residual 
equations in time. 

The next section introduces a computational method to reduce 
the proportionality between the computational effort required for 
convergence and the timestep size.

Performing Computation Only Where It Is 
Needed—Adaptive Localization
With CN, we guarantee that, at the end of an iteration, we have 
either the solution to the target timestep or a solution to another 
known yet smaller timestep. Here, we devise a method to reduce 

the amount of effort required to compute each iterate during the CN 
process. This is desirable because, in addition to the convergence 
guarantees, we want to improve the computational efficiency by 
obtaining a higher ratio of timestep advancement to computational 
effort. 

Current approaches for reducing the amount of computation 
without ignoring physical coupling are centered around substitut-
ing the original large problem with a smaller one whose solution, 
in some sense, is representative of the original one (Chen and 
Durlofsky 2006; Muller and Stribia 2007; Plewa et al. 2003). In 
particular, these methods attempt to exploit the property of local 
domain of dependence, which is characteristic of hyperbolic 
conservation laws in order to choose a coarse representation to 
be solved. In such approaches, it may be challenging to form a 
coarse model that results in a solution that is representative of the 
original nonlinear problem. 

Another approach toward developing adaptive methods is to 
stick to a standard scheme and spatial mesh and to then build 
adaptivity into the underlying solver. Because neither the mesh nor 
the scheme is modified, there will be no introduction of accuracy 
or stability issues. Large-scale variants of Newton’s method, for 
example, reduce the computational effort required for each itera-
tion without degrading the local nonlinear convergence rate (Keyes 
2002; Watson 1986). Common approaches to achieving this are 
inexact-Newton (IN) and quasi-Newton (QN) methods, or a com-
bination of both (Deuflhard 2004; Ortega and Rheinboldt 1970). 

IN methods apply approximate linear solvers to compute the 
Newton direction, given a precise Jacobian matrix. When com-
bined with parameterized controllers for the linear-solver accuracy, 
IN methods can effectively manage an efficiency-to-accuracy 
trade-off. For example, Krylov-Newton controllers can compute 
crude Newton steps away from the solution and more-accurate 
ones within the quadratic convergence basin. QN methods, on 
the other hand, use approximations to the Jacobian matrix itself, 
thereby reducing the computational effort required to compute it. 
While it is challenging to control the accuracy of such updates, 
QN methods, such as the Broyden update class, are the preferred 
method when the Jacobian itself is not available for computation 
(Broyden 1965; Broyden et al. 1973). 

Our objective is to complement IN and QN strategies with the 
ability to considerably reduce the dimensionality of the linearized 
system while still guaranteeing accurate computation of Newton 
directions. We accomplish this by specializing to conservation equa-
tions with traveling waves. Specifically, we exploit the nature of the 
finite domain of dependence in order to identify the components that 
will change the most over a Newton step. Then, only these specific 
components need to be computed by a linear solution strategy. 

Fig. 10—The residual norm vs. step length size using a tangent 
step, and the initial state as a guess.

(a) Number of Jacobian evaluations and linear solves  
required for convergence using CN and modified-Appleyard-  
Newton methods. 

(b) Number of residual evaluations required for  
convergence using CN and modified-Appleyard-  
Newton methods. 

Fig. 11—Convergence characteristics of the CN method compared with modified Appleyard-Newton method.
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We achieve this by following nonzero entries in the right-hand 

side of the tangent solution, 
∂
∂

R

t�
, one at a time through the directed 

flow graph of the Jacobian matrix. We show that upwind schemes 
have the property that the sources do not propagate very far. In fact, 
the influence decays geometrically according to a derived relation 
in the local cell-face linearized wave speeds.

Empirically, pressure unknowns in near-elliptic problems show 
a similar property. That is, the pressure changes are greatest around 
saturation changes, and these pressure changes decay outward, 
though with an extended support. No well-established theory is 
currently available to quantify this support of the pressure field, 
however, as we have for the other unknowns (saturation and 
composition). We develop and demonstrate our algorithmic frame-
work starting from scalar hyperbolic equations and moving onto 
hyperbolic systems and systems of coupled parabolic/hyperbolic 
equations.

High-Level View of Adaptive Localization
Reservoir simulation problems often involve concentration waves 
that are local to certain portions of the domain. The upwind direc-
tions on a simulation mesh form a network through which mass 
transfer takes place over the duration of a timestep. The continua-
tion tangent vectors in Figs. 4 and 8 are examples of linearized state 
updates that propagate material-balance errors over the domain 
during a timestep. These updates are computed using the inverse of 
the simulation Jacobian matrix, which itself incorporates upwind-
ing information as well as local wave speeds. Such updates are 
typically nonzero only within the vicinity of sharp fronts in the old 
state. The objective is to devise a quantitative and reliable strategy 
to exploit this locality before solving the linear system.

Fig. 12a is a depiction of the problem of computing a linear 
update, �, to an initial saturation state for a given timestep. The 
saturation is assumed to be a piston-like front, and the flow is from 
left to right. Consequently, the residual, R, has a single nonzero 
entry, isolated to the cell flanking the front. The Jacobian matrix, J, 
is lower bidiagonal. Fig. 12b shows the action of the inverse of the 
Jacobian on the residual. The inverse of the Jacobian is lower tri-
angular, and it can be shown that its entries decrease in magnitude 
away from the main diagonal. Consequently, the update is nonzero 
only in the cell flanking the front and in the cells downstream of 
it. The magnitude of the update can be shown to be largest in the 
frontal cell and decreases rapidly along the downstream direction. 
This observation motivates an approach that isolates nonzero 
entries in the right-hand side and independently inspects their 
propagation throughout the directed graph of the Jacobian matrix. 
Using the principle of superposition on these isolated nonzero 

entries, we can obtain the solution to problems with general right-
hand-side vectors. Using this technique, it is possible to identify 
which cells will experience linear updates larger than a prescribed 
magnitude before solving the system. As a result, only a smaller 
subsystem corresponding to these isolated cells needs be solved. 
In the hypothetical example of Fig. 12b, this reduced subsystem 
is indicated by the dotted box.

General Localization Algorithm
A Newton step and a CN tangent are computed by solving a linear 
system involving the Jacobian matrix with different right-hand-side 
vectors. Whereas Newton steps have the residual vector as a right-

hand side of the system, CN tangent steps have the vector term 
∂
∂

R

t�
 

on the right-hand side. Without loss of generality, we will consider 
the case of solving for a Newton step, � = J−1R.

By linearity, the Newton step can be written as the sum of N 
substeps, � � �= =1

1
1

1+ + + +− −… …N NJ R J R , where each substep 
is the Newton component that solves a material-balance error in 
a single cell. That is, the residual component, Rj, is a vector with 
only one logically nonzero entry occurring in the jth component. 
As already indicated, the residual vector of multiphase-flow prob-
lems is typically sparse. Subsequently, several residual components 
may be zero. The localization algorithm exploits this principle of 
superposition in order to estimate or directly obtain the Newton 
substeps corresponding to the nonzero residual components.

Owing to the local nature of saturation and concentration 
waves, the individual Newton substeps can be obtained or esti-
mated without solving the entire system. This is because each 
substep has a right-hand side with one nonzero entry. A theoreti-
cal development of this process is presented in Appendix C for 
hyperbolic conservation laws in 1D. The solution process for such 
substeps extends to multidimensional problems on general meshes. 
Fig. 13 illustrates this. The application of the principle of super-
position, where we treat nonzero residual entries independently, 
holds. The entries in the Jacobian matrix form a weighted directed 
graph through the mesh. By generalizing the 1D relations derived 
in Appendix C, we can apply the same procedure to identify cells 
with nonzero updates. In particular, for problems where there are 
no directed cycles within the upwind graph, this is achieved by 
first performing a breadth-first traversal originating at the cell 
with the nonzero material-balance error. For an introduction to the 
breadth-first-traversal graph algorithm, see Cormen et al. (2001). 
By a second traversal limited to the cells that were already visited, 
the update components are computed sequentially. This is the case 
for all scalar problems in saturation and for multiphase problems 
without countercurrent flow (Kwok and Tchelepi 2007).

(a) Schematic of the solution for a linearized update to a  
piston-like displacement over a timestep. 

(b) The linearized update is local to the front and decays along  
the upwind direction. 

Fig. 12—An illustration demonstrating the locality of computed linear updates (continuation tangents or Newton steps) for a 1D 
piston-like front.
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If the upwind graph, on the other hand, has directed cycles, 
heuristics must be employed to estimate the range of influence. 
This is the case for problems with countercurrent flow and with 
compressibility. In such cases, the heuristic we employ is to dis-
connect edges that cause cycles. The effect of this is not expected 
to be severe because the subsequent iteration can be shown to 
spread the material-balance error onto a larger proportion of 
the domain, requiring a complete system solve because of these 
global interactions. For a detailed description of this algorithm, 
see Younis (2009).

Performance of the Adaptively Localized 
CN (ALCN) Algorithm
A suite of cases of Problem 2, which is described in Appendix A, 
is used to investigate the properties of the proposed ALCN algo-
rithm. We present results for two representative cases. The first is 
a gravity-segregation problem with a nonstationary initial condi-
tion. This case is known to stress the nonlinear-solution aspect 
of the transport. The second case superposes gravity effects and 
nonlinear relative permeability with injection and production wells. 
Both cases share the following common parameters. The square 
reservoir is assumed to have no-flow boundaries, with dimensions 
of 100 ft, and is discretized using 100 blocks along both dimen-
sions. An initial pressure of 500 psi is applied to the top of the 
reservoir. We assume a uniform initial porosity of φref = 0.4 at a 
reference pressure of Pref = 14.7 psi, a rock compressibility of cr 
= 1×10−6 psi−1, and an isotropic permeability field of 500 md. The 
normalized relative permeability models used are quadratic and are 
scaled to endpoints of 0 and 1. The oil and water have gravimetric 
densities of 50 and 100, and viscosities of 5 and 1cp, respectively. 
The residual 2-norm convergence tolerance of 1×10−6 is applied, 
and a CN convergence neighborhood tolerance of 1×10−3 is used.

Pure Gravity Segregation
We consider a case of pure gravity segregation where, initially, oil 
saturates the lower portion of a reservoir and water saturates the 

top. Because the boundary conditions are no-flow, the problem 
involves bouncing waves that interact every time they collide with 
one another or with the top and bottom reservoir boundaries. The 
steady-state solution is an equilibrium with oil on the top. Figs. 14a 
through 14c show oil-saturation snapshots over the course of a 
simulation. 

In order to derive an appropriate cell-based CFL number, we 
assume incompressible flow and a zero total velocity. Given these 
assumptions, the cell-based CFL number for cell i, is given as

CFL t
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Fig. 15a shows the sorted distribution of CFL numbers through-
out the mesh. These cell-based CFL numbers are computed using 
the initial condition. For timestep sizes greater than 4.5 days, all 
of the cells in the domain experience CFL numbers that are greater 
than unity.

Fig. 15b shows the iteration count to convergence during a 
series of experiments. In each experiment, a target timestep is set 
from the initial condition and the corresponding system is solved. 
A maximum number of 150 iterations is allowed, and an iteration 
count of 150 implies lack of convergence. The SN and EA methods 
failed to converge for the smallest timestep size tested. Fig. 15b 
shows that the proposed algorithm provides improved asymptotic 
convergence rates, as well as robustness compared with the MA 
method. Fig. 16 shows the average fraction of the total unknowns 
that is solved for at each iteration using ALCN. The fractions vary 
with timestep size because the locality of the saturation changes 
also varies in time. As the segregation process approaches steady 
state, we observe greater locality, whereas, at early times, the 
saturation over the entire domain experiences a slowly varying 
spreading wave. Moreover, because the Newton correction steps 
within the ALCN algorithm are computed within the convergence 
neighborhood, we see that they modify only a small percentage 
of the unknowns.

Gravity Effects Coupled to Well-Driven Flow
Next, we consider a case that involves both gravity segregation 
and well-driven flow. Initially, the reservoir is saturated with oil 
in the upper half and with water in the lower half. A single block 
injector is completed in the upper-right corner, and a producer is 
completed in the lower-left corner. A constant water-injection rate 
of 10 B/D is specified. The producer is operated with a constant 
bottomhole pressure of 500 psi. Figs. 17a through 17c show 
water-saturation snapshots at 0, 120, and 245 days during the 
course of a simulation.

The results in Fig. 18 illustrate the computational effort required 
to solve a full simulation using a single timestep. Various timestep 

Fig. 13—A single nonzero entry in the residual can be tracked 
through the directed upwind graph to determine its range of 
influence on the corrective linearized update.

 syad 005,4 )c( syad 053,1 )b( syad 0 )a(

Fig. 14—Oil-saturation snapshots during simulations for a gravity-segregation case.
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sizes are tested using the proposed ALCN algorithm, as well as the 
MA method. A dimensionless measure of these timestep sizes is 
the cell pore volumes injected (CPVI), which, for this case, cor-
responds to 10 CPVI for a timestep size of 1 day. Fig. 18a shows 
the count of linear solves required to converge a timestep using 
both methods. Once again, the proposed ALCN algorithm pro-
vides improved asymptotic convergence rates over the tuned MA 

method. Moreover, both the SN and EA methods fail to converge 
for the smallest timestep size tested. Fig. 18b shows the count of 
residual evaluations required by the solution processes. Note that 
the ALCN method does require more residual evaluations because 
of the step length selection procedures within the ALCN method.

Concluding Remarks
We developed and illustrated an algorithm that solves implicit 
residual systems using a combination of Newton’s method and a 
continuation on timestep size. The algorithm guarantees conver-
gence for any timestep size, and, if the iteration process is stopped 
before the target timestep is reached, the last iterate is a solution 
to a smaller known timestep. The performance of the algorithm 
was illustrated using several challenging nonlinear problems. 
Compared to state-of-the-art problem-tuned heuristic methods, the 
CN algorithm remains competitive. Additionally, the CN algorithm 
does not require wasteful timestep cuts, unlike all Newton vari-
ants. Moreover, a localization strategy that is based on solution 
propagation properties of the transport equations is used to reduce 
the computational cost associated with solving the linear systems. 
With the combination of these key ideas, reservoir simulators no 
longer require timestep-chopping heuristics, no computational 
effort can be wasted, and the amount of computation required per 
iteration can be reduced substantially.

The CN algorithm presented in this work applies a first-order 
explicit scheme to follow the solution path loosely. We anticipate 
increased computational efficiency through the development of 
stabilized CN variants, which exploit the relationship between 
Newton and tangent steps within the augmented space. This may 

(a) Sorted distribution of CFL numbers throughout  
the domain. 

(b) The number of iterations required to solve a  
set of sample timestep sizes using the modified  
Appleyard heuristic and the proposed ALCN  
algorithm. 

Fig. 15—Results for a gravity-segregation problem with compressibility.

Fig. 16—The average fraction of unknowns solved for at each 
iteration using localization.

 syad 542 )c( syad 021 )b( syad 0 )a(

Fig. 17—Water-saturation snapshots for an unstable injection problem with gravity.
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lead to a characterization of the CN convergence rate in terms of 
the order of accuracy in approximating the solution path.

We also anticipate the application of CN in order to introduce 
timestep control on the basis of accuracy concerns. That is, the CN 
algorithm offers a built-in facility to perform timestep selection 
for the control of time-approximation errors. Because each iter-
ate solves a larger timestep than its successor, error-extrapolation 
techniques may be applied directly to dictate which timestep to 
stop at, thereby providing an a priori error controller that is built 
into the solver and that does not waste computation.

Nomenclature
 C = solution path in augmented space
 C = a positive constant 
 i = unknown index 
 J = Jacobian matrix 
 j = index of cell with nonzero material balance 
 k = CN iteration index 
 M0 = endpoint mobility ratio 
 N  =  convergence neighborhood about a solution path in aug-

mented space
 Ng = gravity number
 n = timestep number
 pk = point in the augmented space
 pint =  point in the augmented space that is within the interior of 

a convergence neighborhood
 R = residual system of nonlinear equations
 S = saturation unknowns 
 Sinj = injection saturation
 Sinit = initial saturation
 Sint =  saturation state within the interior of a convergence neigh-

borhood
 tn = time at timestep number n 
 Un = vector of unknowns at timestep number n
 U0 = vector of unknowns at the beginning of a CN process
 � = CN tangent update step length
 �max = maximum allowable CN tangent update step length
 �min = minimum allowable CN tangent update step length
 �� = step length along a Newton direction
 �t = timestep size
 �ttarget = target timestep size 
 �tint =  timestep component of a point within a convergence 

neighborhood in augmented space

 � = CN tangent in augmented space
 �̂ = normalized CN tangent in augmented space
 �U = state update component of CN tangent
 ��t = timestep update component of CN tangent
 
 = local scaling constant
 � = local attenuation ratio
 � =  diagonal weighting matrix for a general safeguarded 

Newton iteration
 � = solution path arc-length parameterization
 � = Newton iteration index
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Appendix A—Model Problems
We illustrate and apply the key ideas in this work using two res-
ervoir simulation problems. The first is a 1D two-phase Buckley-
Leverett model, and the second is a 2D two-phase-flow problem 
with compressibility and gravity.

Problem 1—Buckley-Leverett Model. We consider a two-phase 
Buckley-Leverett problem in 1D with gravity effects. Flow is 
through a domain with unit length, x ∈[ ]0,1 , and the unknown is 
the water saturation, S(x, t). The governing equation in conserva-
tion form is written in Eq. A-1:
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In Eq. A-1, the initial saturation is denoted Sinit, and the left 
boundary condition, Sinj, is fixed. The fractional flow function, 
f(S), is defined in Eq. A-2, where the viscosity ratio, M0, and the 
gravity number, Ng, are constant parameters:
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In this problem, we assume Hornarpour relations for relative 
permeabilty (Eqs. A-3 and A-4).
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Note that, for an updip case, Ng > 0, or a down-dip case, Ng 
< 0, the fractional flow function may exhibit a local minimum or 
maximum, respectively. This leads to the possibility of countercur-
rent flow. In such cases, we refer to the extremum as the sonic 
point, a local maximum or minimum in the fractional flow, denoted 
f* and occurring at a saturation S*.

We apply a fully implicit discretization in time and a first-order 
upwind discretization in space. On a uniform mesh with N cells, the 
numerical saturation unknown at the nth timestep and the ith cell is 
denoted as Si

n . The numerical scheme is written as in Eq. A-5.
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In Eq. A-5, the timestep size is denoted as �t, the mesh spac-

ing as �x
N

=
1

, and the numerical flux as F. We apply a Dirichlet 

boundary condition on the left of the domain and a second-order 
treatment of a free boundary condition on the right. These are 
numerically prescribed by Eqs. A-6 and A-7.
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For general fractional flow functions, it is necessary to apply an 
entropy-satisfying upwind condition for the numerical flux. This 
condition corresponds to the analytical solution of cell-face Rie-
mann problems. The condition applied is described by Eq. A-8.
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Note that, for fractional flows with sonic points, the numerical 
flux at a cell interface may be independent of both the left and right 
cell saturations when it is evaluated at the sonic point.

We illustrate fully implicit solutions for two cases of Problem 
1. The first case is a horizontal piston-like displacement, and the 
second includes gravity effects and exhibits countercurrent flow. 
In both cases, the injection saturation is unity, Sinj = 1, and the 
relative permeability functions are quadratic with endpoints of 
zero and one. 

In the horizontal case, the endpoint mobility ratio M0 is chosen 
as 10, the gravity number Ng is chosen as 0, the initial satura-
tion, Sinit, is zero, and N = 150. Figs. A-1a and A-1b show the 
fractional flow curve and solution profiles for various timesteps, 
respectively.

In the down-dip case, the endpoint mobility ratio, M0, is chosen 
as 0.5, and the gravity number, Ng, is chosen as −5 for a down-dip 
problem. The number of gridblocks used is N = 150. The initial 
condition has a saturation of 1 up to a distance of 0.34, and a satura-
tion of 0 elsewhere. Figs. A-2a and A-2b show the fractional flow 
curve and solution profiles for various timesteps, respectively.

Problem 2—Compressible Flow With Gravity. The second 
problem involves two-phase compressible fl ow in 2D. Gravity 
effects are superposed with nonlinear relative permeability models 
and injection and production wells to stress the nonlinear solution 
aspect. The unknowns are pressure, p(x, y, t), and water saturation, 
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Sw(x, y, t). The governing equations for the conservation of oil and 
water appear in Eqs. A-9 and A-10, respectively.
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The compressibility in the problem is caused by a pressure-
dependent porosity relation, as specified by Eq. A-11.

� �= 1ref ref+ −( )⎡⎣ ⎤⎦c p pr .  . . . . . . . . . . . . . . . . . . . . . . . . (A-11)

Other parameters in this problem are 
• A diagonal permeability tensor, K, which may be heteroge-

neous
• µw and µo, denoting constant water and oil viscosity, respec-

tively
• Krw and Kro, denoting the water and oil relative permeability 

described by Eqs. A-3 and A-4, respectively
• �w and �o, denoting the constant water and oil gravimetric 

density
• h, denoting depth along the direction of gravity

We apply a fully implicit discretization with standard single-
point phase-based upstream weighting. The oil-conservation equa-
tion is aligned with pressure, and the water equation with water 
saturation. We assume no-flow boundary conditions across the 
rectangular domain of dimensions Lx and Ly. A rate-controlled 
injector and bottomhole-pressure producer are introduced and are 
completed in single blocks. The initial condition may be transient, 
allowing the specification of an arbitrary initial saturation distribu-
tion. In such cases, the pressure distribution is initialized according 
to gravity and a specified pressure at the top of the reservoir.

Appendix B—Algorithmic Details of the 
CN Method
Algorithm 1 prescribes the general CN process to solve a target 
timestep �ttarget given an old state Un, which may involve many 
unknowns. 

Algorithm 1: CONTINUATION-NEWTON-STEP (Un, �ttarget). 

Require: �ttarget ≥ 0 and U n N∈R

Ensure: F(U, �t, Un) = 0, 0 < �t ≤ �ttarget, and, niter < Nmax 

niter ← 0 
�t ← 0 

 seliforp noituloS )b( evruc wolf lanoitcarF )a(

Fig. A-1—Fractional flow curve (a) and saturation solution profiles (b) for a 1D Buckley-Leverett problem without gravity.

 evruc wolf lanoitcarF )a(  seliforp noituloS )b(

Fig. A-2—Fractional flow curve (a) and saturation solution profiles (b) for a down-dip 1D Buckley-Leverett problem.
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U ← Un 
while niter < Nmax, and �t < �ttarget 
 �̂ ← COMPUTE-TANGENT(U, �t, Un) 
 � ← SELECT-TANGENT-STEP-LENGTH ( ˆ )U t U n, , ,� �
 W ← U 
 for i = 0 to i = N do
  W(i) ← APPLEYARD-SAFE-UPDATE W i i( ) ( )⎡⎣ ⎤⎦,��̂
 end for
 �t N2 1← +( )��̂
 niter ← niter+1
 if IS-WITHIN-NEIGHBORHOOD(W, �t2, U

n) 
  U ← W
  �t ← �t2 
 else 
  /* No tangent step length is admissible in convergence 

neighborhood */
   U, Nnewton ←  MODIFIED-APPLEYARD-NEWTON-

CORRECTOR(U, �t, Un) 
  niter ← niter+Nnewton 
 end if
end while
U, Nnewton ←  MODIFIED-APPLEYARD-NEWTON-

SOLVER(U, �t, Un) 
niter ← niter +Nnewton 
return U, �t, and, niter 

Algorithm 1 uses several subalgorithms, some of which have 
already been discussed; the Appleyard safe update performs a cell-
wise saturation update along the tangent direction, and the modi-
fied Appleyard-Newton corrector and solver performs a Newton 
process using the modified Appleyard heuristic. In Algorithm 1, 
local Newton corrections to bring points closer to the solution path 
are performed by a Newton solver except that a different, looser 
convergence tolerance is used. Specifically, the corrector conver-
gence tolerance only needs to be smaller than or equal to the con-
vergence neighborhood tolerance. The remaining subalgorithms 
are SOLVE-TANGENT, which computes the normalized tangent 
update vector, �̂; SELECT-TANGENT-STEP-LENGTH, which 
performs a search along the tangent for the largest step that remains 
within the convergence neighborhood; and IS-WITHIN-NEIGH-
BORHOOD, which tests whether a point is inside the convergence 
neighborhood. These three subalgorithms are developed next.

Tangent Computation Algorithm. Algorithm 2 prescribes the 
details of computing the tangent vector at a point (U, �t) close to 
the solution path emanating from the point (Un, 0).

Algorithm 2: COMPUTE-TANGENT (U, �t, Un).

Require: �t ≥ 0 is a timestep size for state U N∈R  from the initial 
state U n N∈R .

Ensure: �̂ ∈ +RN 1 is the unit tangent to the augmented solution 
curve emanating from (Un, 0) at the point (Un, �t).

Fix a positive constant C. The choice C = εmach , where εmach is 
the machine precision, can be used for numerical conditioning.

C C

t
R U t U n

←
∂

∂ ( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

max ,
1

; ,
�

�

�u
nCJ

t
R U t U← − ∂

∂
( )−1 ; ,

�
�

��t C←

� � �← ( )u t

T
, �

�̂
�

�← 1

return �̂

Note that the value of the constant C is chosen as the inverse 
of the norm of the timestep derivative of the residual system. This 
improves the numerical scaling. The Jacobian matrix, J, need not 
be inverted explicitly, and any choice of efficient reservoir simu-
lation linear solver can be used. Here, we focus on the nonlinear 
convergence aspects, and we apply a direct sparse solver with 
partial pivoting [see Li (2005)].

Prescribing a Convergence Neighborhood. Algorithm 3 describes 
the details of testing whether a given point (U, �t) is within the 
convergence neighborhood about the solution path emanating 
from (U0, 0). The choice of residual tolerance cut-off is subjec-
tive. Accepting the locally quadratic convergence rate of Newton’s 
method, we use a tolerance that is one or two orders of magnitude 
looser than that required to judge if an iterate is a valid solution.

Algorithm 3: IS-WITHIN-NEIGHBORHOOD(U, �t, U0).

Require: �t ≥ 0 is a timestep size for state U N∈R  from the initial 
state U N

0 ∈R .

Ensure: Returns whether U is within the convergence neighbor-
hood at timestep �t from state U0.

Fix a positive tolerance εcntrol. A typical choice may be
ε εcnrtol rtol= , where εrtol is a residual tolerance used for a Newton 
correction process. 

if R U t U, ; <0�( ) εcnrtol  then
 return true
else
 return false
end if

Step Length Selection Algorithm. The algorithm used to solve the 
univariate problem is derivative-free. Each iteration requires simply 
the evaluation of the residual. We apply a backtracking approach 
that starts by evaluating whether �min results in an update that lies 
within the convergence neighborhood. If this is not the case, the 
search is terminated, and Newton corrections are triggered. Other-
wise, backtracking from �max, we search for the fi rst step length that 
produces an update within the neighborhood. The maximum number 
of backtracking steps is a parameter of the algorithm. Increasing 
this quantity may result in a solution with fewer tangent steps at the 
expense of more residual evaluations performed per tangent step. 
Algorithm 4 describes the details of this process.

SELECT-TANGENT-STEP-LENGTH U, t, ,U n� �̂( ) .

Fix a maximum number of backtracking iterations; Itermax ≥ 1. 
 Fix a minimal timestep size advancement per tangent step, �tmin 
> 0. This can be based on a suitable CFL number such as 1. 
 Fix a maximal timestep size advancement per tangent step, 
�tmax > �tmin. A typical CFL number may be 10.

�
�

min
min←
+( )

�t

Nˆ 1

�
�

max
max←
+( )

�t

Nˆ 1

� ← −� �max min

maxIter

� ← �max 
do 
 for i = 0 to N do
  U*(i) ← APPLEYARD-SAFE-UPDATE U i i( ) ( )⎡⎣ ⎤⎦,��̂
 end for
 � �t t N* 1← + +( )��̂
 is-converged ←  IS-WITHIN-NEIGHBORHOOD (U*, �t*, Un) 
 � ← �−�
until � < �min−� or is-converged = true
return �
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Appendix C—Theoretical Development of 
Localization for Hyperbolic Transport in 1D
For the purpose of motivating our approach, we restrict our atten-
tion in this section to quasilinear scalar conservation laws in 1D 
(Eq. C-1). The flux function f is assumed to be differentiable with 
derivative f
 and may be spatially dependent and generally nonlin-
ear; it may also have sonic points and is not necessarily convex.

u x t f x u
t x

, , = 0( ) + ( ) .  . . . . . . . . . . . . . . . . . . . . . . . . . . . (C-1)

We are interested in square nonlinear systems arising from 
implicit two-level approximations of the Godunov type [see, 
for example, LeVeque (1992)]. A general form for the resulting 
residual is written as

R I c F F U Ux
R L n� �( ) ( )≡ + −( )⎡⎣ ⎤⎦ − = 0,  . . . . . . . . . . . . . . . (C-2)

where the mesh ratio cx = �t/�x ≥ 0 is fixed and � is the nonlin-
ear iteration index. Note that, in the definition of the residual, we 
restrict the analysis to first-order upwind approximations, which 
can generally be written as

F

f U U U

i
R Ui U Ui

i i i

Ui U U

= 1
1/2 1

1

≤ ≤ +
+ +

+ ≤ ≤

( ) ≤min

ii
if U

i N
max + ( )

⎧
⎨
⎪

⎩⎪
1/2

= 1,2,
otherwise

, … .  . . . . . . . (C-3)

Note that F Fi
L

i
R= 1− . For a given nonlinear iteration, �, we have 

at hand an iterate, U(�), and we compute a corresponding residual, 
R(�), and Jacobian, J(�). From now on, iteration index superscripts 
will be dropped, and all terms are assumed to be at the �th non-
linear iteration of a timestep. In this notation, the corresponding 
Newton step is � ≡ −J−1R. 

By linearity, we can also write the Newton step as a combi-
nation of substeps, each resulting from the action of the inverse 
Jacobian on a single component of the residual. That is, let R = 
R1+…+RN be such that 

R
R i j

Nj
i

i
( )

( ) =⎧
⎨
⎪

⎩⎪
≤=

0 otherwise
0<i, ,

where the superscript index i is the block index and the subscript 
index j is that of the cell with a nonzero residual entry. Subse-
quently, the Newton step can be written as � = �1+…+ �N, where 
�j ≡ −J−1R. Each Newton substep represents the state update over 
an iteration caused by a nonzero residual entry in a single cell. We 
will show next that each of these substeps essentially propagates 
the isolated nonzero entry in the residual according to the local 
upwind direction and the local wave speeds. More precisely, we 
derive a quantitative relation for the numerical range of influence 
caused by a given nonzero residual entry. This is described first for 
problems without sonic points. We then generalize the scheme to 
countercurrent-flow problems involving sonic points. Finally, we 
combine this information to formulate a quantitative relation for 
the total range of influence.

Flux Functions Without Sonic Points. Given an iterate, we fi rst 
suppose that the fl ux function has no extremal points over the 
cell-state range. In this case, the upwind directions will be unidi-
rectional throughout the entire domain. If the fl ux function has non-
negative derivatives, f 
 ≥ 0, the resulting fl ow is from left to right 
(upwind directions are to the left). Alternatively, for f 
 ≤ 0, the fl ow 
is from right to left. We derive in detail the main results assuming 
f 
 ≥ 0 and state the corresponding result in the other case. 

Denoting the local linearized CFL number as � i x ic f≡ ′ , the ith 
entry in the resulting Newton step is given by

�
�

� �i

i

i
i

iR i N( ) ( )
−

−( )−
+

−⎡⎣ ⎤⎦ ≤=
1

1
,0 <1

1 .

The magnitude of the Newton step in a given cell depends on, at 
most, the residual values in the cells upstream of it. We can exploit 
this fact to quantitatively identify the numerical range of influence 
caused by a nonzero residual entry in each cell independently. 

For a given cell 0 < j ≤ N, we can write the corresponding 
Newton substep �j = −J−1Rj as

� 
j
i

j

i j
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−=

0 0 <

RR i jj

k j

i
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=

−( )∏ =

1
� 
 RR j i N

i N
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⎪

⎩
⎪
⎪

≤, 0 < ,  . . . . . . . (C-4)

where we have the local scaling constant, 
i , written as



�

i
i

≡
+
1

1
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C-5)

and the local attenuation ratios, �k , given by

�
�

�
k

k

k

≡
+1

.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C-6)

The Newton substep does not modify the iterate state in cells 
upstream of the disturbed cell j. The cells downstream of j will be 
updated by a quantity that is a scaled version of the update at the 
disturbance source. The question we answer here is how far out 
downstream into the domain are the effects of the disturbance felt.

Because �i ≥ 0 for 0 < i ≤ N, both the local attenuation ratios and 
the scaling constants are bounded by 1. Denoting the maximum 
and minimum CFL numbers over all cells downstream of j as �max,j 
and �min,j, we derive bounds on the local scaling constants as

0 <
1

1
1,

,
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i j
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≤ ≡
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 . . . . . . . . . . . . . . . . . . . . . . . (C-7)

and on the local attenuation ratios as

0
1

< 1,
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.  . . . . . . . . . . . . . . . . . . . . . . (C-8)

We are interested in identifying the propagation rate through 
the Newton substep. Using the bounds in Eqs. C-7 and C-8, a 
conservative upper bound on the magnitude of the substep update 
in any cell downstream of the disturbance is given as

� � 
j
i

j

i j

j
jR j i N( ) − ( )≤ ( ) ≤ ≤max max, , , .  . . . . . . . . . . . . . . . . . (C-9)

The alternative case, ′≤fi 0, is treated similarly. For a given 
Newton substep caused by a disturbance in cell j, we have that the 
magnitude of the update will be bounded as

� � 
j
i

j

j i

j
jR i j( ) − ( )≤ ( ) ≤ ≤max max, , ,1 .  . . . . . . . . . . . . . . . . (C-10)

Sonic Points and Countercurrent Flows. More generally, the 
upwind direction may not be uniform throughout the domain. In 
particular, the fl ux function may map from extremal points over the 
range of state values in a given iterate. With single-point upwind 
schemes, this implies that at any cell face, the upwind fl ux of a 
particular phase may be evaluated at either left-, right-, or sonic-
point states. In the fi rst two cases, the upwinding implies a coupling 
from the upstream cell to one or more cells downstream. In the case 
of a sonic point, numerically, no coupling occurs over the timestep 
(i.e., the zero speed characteristic of a Riemann fan is independent 
of the left and right states). Subsequently, it is easy to show that, 
for general states and a given substep of interest, one of Eqs. C-9 
and C-10 would hold. 

Fig. C-1 depicts a mesh over which a Newton iterate has a vary-
ing upwind direction throughout the domain. Within the disjoint 
closed subdomains labeled �1, and �4, the flow direction is positive. 
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Fig. C-1—Sketch of a 1D mesh over which an iterate involves 
changing upwind directions.

Within �3, it is negative. Finally, the state within subdomain �2 
is that of a Riemann fan over the timestep interval. Subsequently, 
a nonzero residual entry in some cell j ∈�1 or j ∈�4 , can give 
rise to nonzero correction entries in the Newton substep, � j

i( ), only 
within cells i i i j: ,1,4∈ ≥{ }� . Within these cells, the precise mag-
nitude of the corrections satisfy Eq. C-4. Moreover, the substep 
correction entries are bounded as in Eq. C-9, where, now, the 
maximum and minimum local CFL numbers are to be taken over 
the set of cells i i i j: ,1,4∈ ≥{ }� . Similarly, for a nonzero residual 
entry in j ∈�3, the effects can be felt only through i i i j: ,3∈ ≤{ }�  
and the bounds in Eq. C-10 hold. Finally, the effects of a nonzero 
residual in �2 are isolated to that single cell.

Algebraic Localization Algorithm. Having a priori conservative 
bounds that are easily computable, we can specify a desired abso-
lute tolerance εtol > 0, for which we wish to determine how far down-
stream of the disturbance will the magnitude of the Newton substep 
components exceed the tolerance. That is, we wish to determine 
an index j ≤ irange ≤ N, such that for each k j i∈{ }, ,… range , we have
� j

l( ) ≤ ε tol. Indeed, such a conservative bound is easily derived as
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Algorithmically, the absolute error tolerance, εtol > 0, can be set 
using the same criteria used in controlling inexact linear solvers. 
That is, we may apply all of the available theoretical machinery for 
relating the overall nonlinear convergence rate with the accuracy 
of computing Newton steps. What is unique about our range-of-
influence approach is that, even for very tight tolerances εtol → 0, 
the savings in computational effort can be substantial. 

Finally, this analysis provides a strategy to localize computa-
tions for each nonlinear iteration. Given the iterate, we can simply 
determine the index sets Iactive range, ,= :j ji j i i≤ ≤{ } independently 
for each j N∈{ }1, ,… . Cells indexed by a set will contain non-
negligible Newton substeps. Cells indexed by the complement sets 
will have negligible Newton changes. The union of all active index 
subsets I Iactive active=

=1 ,j

N

j∪  flags the cells that must be updated. The 
reduction procedure is a standard column and row extraction from 
the Jacobian matrix and corresponding residual elements followed 
by a linear solve.
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