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Abstract The most notoriously expensive component to develop, extend, and main-
tain within implicit PDAE-based predictive simulation software is the Jacobian eval-
uation component. While the Jacobian is invariably sparse,its structure and dimen-
sionality are functions of the point of evaluation. The application of Automatic Dif-
ferentiation to develop these tools is highly desirable. The challenge presented is
in providing implementations that treat dynamic sparsity efficiently without requir-
ing the developer to have anya priori knowledge of sparsity structure. Under the
context of dynamic sparse Operator Overloading implementations, we develop a di-
rect sparse lazy evaluation approach. In this approach, an efficient runtime variant
of the classic Expression Templates technique is proposed to support sparsity. The
second aspect is the development of two alternate multi-waySparse Vector Linear
Combination kernels that yield efficient runtime sparsity detection and evaluation.
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1 Introduction

A focal area of scientific computing is the predictive simulation of complex phys-
ical processes. Implicit simulation methods require the evaluation and solution of
large systems of nonlinear residual equations and their Jacobian matrices. In the
context of emerging simulation applications, the Jacobianmatrix is invariably large
and sparse. Moreover the actual sparsity structure and dimensionality may both be
functions of the point of evaluation. Additionally, owing to the model complexity,
the evaluation of the Jacobian matrix typically occurs overnumerous modules and
stages, requiring the storage of resultants from a wide range of intermediate calcu-
lations. The resultants of such calculations vary dramatically in terms of their level
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of sparsity, ranging from univariate variables to dense andblock sparse multivari-
ates. Finally, given an interest in rapidly modifiable codesto include new physics
or alternate sets of independent unknowns, the most notoriously expensive software
component to develop, extend, and maintain is the Jacobian matrix evaluation com-
ponent. Dynamic, sparse Automatic Differentiation (AD) offers a clearly recognized
potential solution to the design and development challenges faced by implicit simu-
lator developers. Several comprehensive introductions toAD are available [9, 7, 15].
The efficient runtime computation of dynamic sparse Jacobian matrices is the topic
of several recent contributions. There are two broad approaches to dynamic sparse
AD.

The first approach uses results from sparsity pattern analysis by graph coloring
techniques in order to obtain the Jacobian from a compressedintermediate dense
matrix [13, 8]. This is accomplished by inferring the sparsity pattern of the Jacobian
and analyzing it to determine an appropriate compression operator that is referred
to as theseed matrix. The dense intermediate matrix is computed using AD, and
the target sparse Jacobian is backed-out from it using the seed matrix. Since the AD
operations are performed in a dense format, they can be implemented efficiently.
Advances in efficient dense AD implementations include the Operator Overload-
ing (OO) tools as described in [14, 1]. These approaches report the use of a lazy
evaluation generic metaprogramming technique known as Expression Templates
(ET) [11, 10] in order to attain close to optimal dense AD operation efficiencies.
The computational costs of the compression and de-compression however can be
significant and can involve heavy sparse memory bandwidth limited operations. In
situations where the sparsity pattern is constant or is known a priori, this cost may
be amortized since the seed matrix remains unchanged. In thecontext of general
purpose predictive simulation this is not the case.

The second approach is intrinsically dynamic, and it uses sparse vector datastruc-
tures to represent derivatives. The core computational kernel of direct runtime sparse
AD is a SParse-vector Linear Combination (SPLC). This is because the derivative
of any expression withk > 0 arguments can be expressed as a linear combination
of the k sparse vector derivatives of the expression arguments;c1f

′

1 + . . . + ckf
′

k .
SPLC operations perform sparsity structure inference along with the computation
of the sparse Jacobian entries. Examples of implementations with such a capability
include the SparsLinC module [4] within the Source Transformation tools ADI-
FOR [3] and ADIC [5]. Direct sparse treatment offers complete runtime flexibility
with transparent semantics. On the other hand, since the computational kernel con-
sists of a set of sparse vector operations, it is a challenge to attain reasonable com-
putational efficiency on modern computer architectures. Sparse algebra operations
involve a heavy memory bandwidth requirement leading to notoriously memory-
bound contexts[12]. Existing codes such as the SparsLinC module provide various
sparse vector datastructures that attempt to hide the costsof dynamic memory and
memory latency to some extent.
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1.1 This work

This work extends the lazy evaluation performance optimization techniques that are
applied in dense AD approaches to direct dynamic sparsity OOimplementations.
The extension requires two advances. The first, is to extend the datastructures and
construction mechanism of the ET technique to suit sparsity. The second is to de-
velop single pass algorithms to execute SPLC expressions more efficiently.

Section 2 introduces the challenges of extending the classic compile-time ET
technique to support sparse arguments directly. A run-timealternative form of ET
is developed. In particular, the run-time variant is designed to deliver competitive
levels of efficiency compared to static approaches while directly supporting sparsity.

Section 3 reviews current SPLC algorithms and develops an alternate class of
single-pass SPLC evaluation algorithm. The algorithms execute SPLC expressions
involvingk sparse vectors in one go while improving the ratio of memory and branch
instructions to floating point operations over current alternatives.

Finally, Sect. 4 presents computational results using a large-scale Enhanced Oil
Recovery simulation.

2 Lazy evaluation techniques for dynamic sparsity

The compile-time (static) ET technique is a lazy evaluationOO implementation that
overcomes the well-recognized performance shortcoming ofplain OO [6]. Along
thepairwise evaluation process of OO, the ET technique generates expression graph
nodes instead of dense vector intermediate resultants. Theexpression nodes are al-
located on the stack, and they are meant to be completely optimized away by the
compiler. The execution of the expression is delayed until the expression is assigned
to a cached dense vector variable. At that point, the expression is executed with a
single fused loop.

Since dense linear combinations involve vectors of the samedimension, the
single-pass loop is performed entry-by-entry. Each iteration produces the appro-
priate scalar resultant by recursively querying parent nodes in the ET graph. The re-
cursion terminates at the leaf dense vectors which simply return their corresponding
entry. On the way out of the recursion, intermediate nodes perform scalar operations
on the returned values and pass the resultant down along the recursion stack.

The extension of the classic ET technique to SPLCs requires adifferent ET datas-
tructure. In sparse operations, non-zero entries do not always coincide, and subse-
quently the depth of the fused loop is not known until the entire SPLC is executed.
Moreover, every node within the ET datastructure would needto maintain its own
intermediate scalar state. This implies that the ET nodes for a sparse expression
grow recursively in size on the stack with no constraints on the recursion depth.
This is exacerbated by the fact that OO intermediates have a temporary life-cycle,
and so ET nodes need to store parent nodes by value to avoid undefined behavior.
The exception to this is the leaf nodes since they refer to vector arguments that
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are persistent in memory. This costly situation suggests a value in dynamic SPLC
expression datastructures that are inexpensive to build atruntime.

Once they are multiplied through, forward mode derivative expressions become
vector linear combinations. The SPLCs can be represented bya list where each entry
is a pair of a scalar weight and a sparse vector argument. Owing to their efficiency
of concatenation, singly linked list datastructures can beused to efficiently store and
represent runtime SPLC expressions. In the proposed approach, the scalar operators
are overloaded to generate an SPLC list through three fundamental building blocks.
These three operations are illustrated Fig. 1.

(a) c.V (b) c.∑k
i=1ai.Vi

(c) ∑K
i=1ai.Vi +∑N

j=1b j.W j

Fig. 1 SPLC expressions are represented by a one-directional linked list. The list is built by the
OO pairwise evaluation process involving three fundamental operations only.

The first operation depicted in Fig. 1(a) involves the multiplication of a scalar
weight and a sparse vector argument. This operation would beused for example
whenever the chain rule is applied. Only in this operation isit necessary to allocate
memory dynamically. Since the elements of SPLC expressionsare allocated dynam-
ically, their lifespan can be controlled explicitly. Subsequently, nodes can be made
to persist beyond a statement’s scope and it is only after theevaluation stage that the
SPLC expressions need to be freed.

The second operation is the multiplication of a scalar and a SPLC sub-expression.
As illustrated in Fig. 1(b), this is accomplished most efficiently by multiplying the
weights in the linked list through, leaving the dynamic memory intact as is it re-
turned by the operator.

Finally, Fig. 1(c) illustrates the third building block; the addition of two SPLC
sub-expression, each containing one or more terms. The addition simply involves
the re-assignment of the tail pointer of one sub-list to the head node of the other. In
total, using dynamic memory pools, the run-time lists requireO{k} operations.
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3 K-Way SPLC Evaluation kernels

Upon assignment to a resultant, the SPLC needs to be evaluated. In this section,
we develop two evaluation algorithms that exploit the fact that allk arguments are
already available.

The first algorithm employs a caching implicit binary tree togeneralize the
SparsLinC algorithms. The cached intermediate nodes storenon-zero elemental in-
formation, thereby substantially reducing the number of non-zero index compar-
isons and the associated memory bandwidth requirements. The second algorithm
is inspired by the seed matrix mappings used in other forms ofsparse AD. Before
presenting the two algorithms, we review the current approach to SPLC evaluation
in AD tools.

The SparsLinC module generalizes a 2-way algorithm in a static manner to ac-
commodate more arguments. The 2-way SPLC uses a running pointer to each of
the two vector arguments. Initially both of the two pointersare bound to the first
non-zero entry of its respective sparse vector argument. While both running point-
ers have not completely traversed their respective vector,the following sequence of
operations is performed. The column indices of the two running pointers are com-
pared. If the nonzero entry column indices are equal, the twoentries are linearly
combined and inserted into the resultant. Both running pointers are advanced. On
the other hand, if they are not equal, then the entry with the smaller column index is
inserted, and only its running pointer is advanced. At the end of the iteration, if one
of the two sparse arrays involves any remaining untraversedentries, they are simply
inserted into the resultant. The SparsLinC module executesK-Way combinations by
repeating this 2-way algorithm in a pairwise process.

3.1 K-way SPLC kernel 1: Caching nodal binary tree

This approach generalizes the pairwise evaluation processused by SparsLinC in or-
der to perform the evaluation in one pass while minimizing the number of index
comparisons that are necessary. A binary tree is designed tomaintain non-zero el-
emental state information at each node. This state information consists of a single
nonzero entry (a pair of an integer column index and a value),as well as a logical
index that maintains a node’sactivation. There are two types of nodes that make-up
the tree.

1. Terminal leaves are the parent terminal nodes, and each leaf refers to a SPLC
argument. A running pointer to the argument’s sparse vectoris maintained. The
pointer is initialized to the sparse vector’s first nonzero entry. Terminal leaves
areactive provided that their running pointer has not traversed the entire sparse
vector.

2. Internal nodes, including the terminal root node, have two parents. Such nodes
maintain the linear combination nonzero resultant of the parent nodes. Internal
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nodes also maintain a coded activation variable that distinguishes between each
of the following four scenarios:

a. Internal nodes are inactive if both parents are.
b. The left parent entry has a smaller column index than the right parent.
c. The right parent’s column index is smaller than the left’s.
d. The column indices of both parents are equal.

Fig. 2 A hypothetical SPLC expression and caching binary tree. Theleft sub-tree resultant is
a sparse vector with nonzero entries with low column indices. The right sub-tree resultant has
nonzero entries with large column indices. At the initial stages of the evaluation process (the first
four iterations), only the left sub-tree is queried for column index comparisons.

The evaluation is performed in a single pass process starting from the root inter-
nal node. At each step in the fused evaluation loop, two reverse topological sweeps
are executed by recursion. The first sweep is anAnalyze Phase that labels the acti-
vation codes. The second sweep is anAdvance Phase where all advance-able nodes
are visited to evaluate their nonzero entry value and to update the running pointers
of the active leaf nodes. The iteration continues so long as the root node remains
active.

Consider the hypothetical SPLC scenario illustrated in Fig. 2. The proposed al-
gorithm requires at most half of the number of comparisons and associated reads
and writes as would be required by a SparsLinC kernel.

3.2 K-way SPLC kernel 2: Prolong-and-restrict dense
accumulation

This algorithm is inspired by the seed matrix approaches to sparse AD. As illustrated
in Fig. 3, the algorithm proceeds in a two stage process. In prolong phase (Fig. 3(a)),
each of thek sparse array arguments is added into a zero-initialized dense buffer. In
the restrict phase (Fig. 3(b)), the entire dense buffer is traversed to deduce the non-
zero entries producing a sparse resultant. This algorithm performs poorly whenever
the dimension of the required enclosing dense buffer is verylarge compared to the
number of non-zero entries in the resultant. On the other hand, when that is not the
case, this algorithm is very effective as it uses a more favorable memory locality
profile and involves no branching in the prolong phase.
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(a) Prolong phase; sparse vectors are added to
a zero-initialized dense buffer.

(b) Restrict phase; the dense intermediate is
mapped to a sparse resultant.

Fig. 3 An illustration of the two stages of the prolong-and-restrict k-way SPLC kernel. In this
example, there are two SPLC arguments,k = 2, with unit weights.

3.3 Summary

Expressions involving multiple arguments (k > 2) can be evaluated more efficiently
usingk-way generalizations. In order to better characterize and compare the perfor-
mance of the proposed algorithms, we introduce some diagnostic SPLC parameters
which may all be computed efficiently during the SPLC list construction process.
The first parameter is theApparent Dimension, Na, that is defined as the difference
between the smallest nonzero entry column index and the largest column index in
the resultant of the SPLC expression. The second parameter is theNonzero Density,
0 < Nd ≤ 1, which is the ratio of the number of nonzero entries in the resultant of
the SPLC to the Apparent Dimension. Finally, the third parameter is the number of
arguments in the expressionk.

The computational cost of the caching binary tree kernel is clearly independent
of Na. A worst-case scaling of the number of necessary memory reads and writes
goes as log(k)Nd . This cost is asymptotically favorable to that attained forexample
by the SparsLinC kernel which scales ask.Nd . On the other hand, the cost of the
prolong-and-restrict dense accumulation kernel scales primarily with Na since the
prolong phase involves no branching.

4 Computational Examples

The OO lazy evaluation techniques discussed in this work areall implemented in a
comprehensive thread-safe generic C++ OO AD library [16] that computes runtime
sparse Jacobians using the forward mode. The AutomaticallyDifferentiable Expres-
sion Templates Library (ADETL) provides generic datastructures to represent AD
scalars and systems that can be univariate or multivariate (generically dense, sparse,
or block sparse). The library handles cross-datatype operations and implements
poly-algorithmic evaluation strategies. The choice of OO technique used depends
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on the type of derivatives involved in an AD expression. The ADETL treats uni-
variates with a direct pairwise evaluation. Dense multivariate expressions involving
more than two arguments are treated using the classic ET technique. Finally, sparse
and block-sparse multivariate expressions are treated with the dynamic SPLC lists
and are evaluated using either of the two proposed kernels.

To illustrate the computational performance of the proposed algorithms for
sparse problems, we consider a number of hypothetical SPLC expressions as well
as the computation of a block structured Jacobian matrix arising from the numerical
discretization of a system of PDAEs.

4.1 Model SPLC numerical experiments

In order to empirically validate the computational cost relations discussed in Sect. 3.3,
we generate a number of synthetic SPLC expressions that spana portion of the three
dimensional parameter space defines byk, Na, andNd . In particular, we execute a
series of SPLC expressions∑k ckVk with k = 2,4,8,16, and 32 arguments. The ar-
gument sparse vectorsVk and coefficientsck are generated randomly. By freezing
the Apparent Dimension,Na = 105, we can varyNd simply by varying the number
of nonzero entries used to generate the sparse vector arguments. We consider the
range 10−6 < Nd < 10−1 that spans a wide range of levels of sparsity. Figure 4(a)
and Figure 4(b) show the empirical results obtained using the binary tree and the
prolong-restrict kernels respectively. The figures show plots of the wall execution
time taken to construct and evaluate SPLC expressions with varyingNd . Each curve
consists of results for a fixedk.
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Fig. 4 Performance comparisons of several SPLC evaluations usingthe two proposed kernels.
The test sparse vectors are generated randomly and have an Apparent Dimension,Na = 105.

Clearly, the asymptotic behavior of the two algorithms is distinct. The prolong-
restrict results show that for fairly largeNa, neither the number of arguments nor
the level of sparsityNd matter. These differences in computational cost lead to a
performance crossover point. The ADETL exploits this by performing install-time
measurements such as those presented in Fig. 4 in order to apply a poly-algorithmic
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evaluation strategy that automatically selects the betteralgorithm for a given situa-
tion.

4.2 Model Problem Simulation Jacobian

The nonlinear residual and Jacobian evaluation routines ofa General Purpose Reser-
voir Simulator (GPRS) are re-written using the ADETL[16]. The original GPRS
code was written using hand-coded Jacobian matrices including manual branch
fragments that encode a dynamic sparsity pattern. The GPRS implements fully cou-
pled implicit finite volume approximations of compressiblecompositional, thermal,
multi-phase flow in porous media[2]. The system of equationsis a collection of
PDAEs of variable size and structure depending on the thermodynamic state.

(a) Pressure contour time snapshot (psi) (b) Gas saturation time snapshot

Fig. 5 Two sample state component snapshots for a simulation performed using the ADETL.

Figure 5 shows sample results obtained using the ADETL GPRS.During the
course of the simulation, 735 Newton iterations are performed, each requiring the
evaluation of the residual and Jacobian. The total wall clock times taken by the
hand-differentiated and manually assembled GPRS is 238-secs. The time taken by
the ADETL implementation is 287-secs, implying a total performance penalty of
21%. This penalty is considered minor compared to the improved maintainability
and level of extendability of the new code.

5 Summary

The core kernel of runtime sparse Jacobian AD is a SPLC operation. We develop an
OO implementation that combines a dynamic form of ET along with two alternate
k-way evaluation algorithms. Extensive use of the ADETL in developing general
purpose physical simulation software shows comparable performance compared to
hand-crafted alternatives.
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Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.) Automatic Differentiation: Ap-
plications, Theory, and Implementations,Lecture Notes in Computational Science and Engi-
neering, vol. 50, pp. 1–14. Springer, New York, NY (2005). DOI 10.1007/3-540-28438-91

16. Younis, R.M.: Modern advances in software and solution algorithms for reservoir simulation.
Ph.D. thesis, Stanford University (2002)


