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Abstract The most notoriously expensive component to develop, exiamd main-
tain within implicit PDAE-based predictive simulation swére is the Jacobian eval-
uation component. While the Jacobian is invariably spatsstructure and dimen-
sionality are functions of the point of evaluation. The aggtion of Automatic Dif-
ferentiation to develop these tools is highly desirablee Thallenge presented is
in providing implementations that treat dynamic sparsificiently without requir-
ing the developer to have amypriori knowledge of sparsity structure. Under the
context of dynamic sparse Operator Overloading implentiemts, we develop a di-
rect sparse lazy evaluation approach. In this approachffiairert runtime variant
of the classic Expression Templates technique is propassdgport sparsity. The
second aspect is the development of two alternate multiSymrse Vector Linear
Combination kernels that yield efficient runtime sparsigyesttion and evaluation.
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1 Introduction

A focal area of scientific computing is the predictive sintidla of complex phys-
ical processes. Implicit simulation methods require thalation and solution of
large systems of nonlinear residual equations and theohiac matrices. In the
context of emerging simulation applications, the Jacohiatrix is invariably large
and sparse. Moreover the actual sparsity structure andndiomality may both be
functions of the point of evaluation. Additionally, owing the model complexity,
the evaluation of the Jacobian matrix typically occurs auamerous modules and
stages, requiring the storage of resultants from a widegafhintermediate calcu-
lations. The resultants of such calculations vary draraliyiin terms of their level
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of sparsity, ranging from univariate variables to dense lslodk sparse multivari-
ates. Finally, given an interest in rapidly modifiable cotegclude new physics
or alternate sets of independent unknowns, the most notlyiexpensive software
component to develop, extend, and maintain is the Jacokaamxnevaluation com-
ponent. Dynamic, sparse Automatic Differentiation (AD{eo$ a clearly recognized
potential solution to the design and development challefgeed by implicit simu-
lator developers. Several comprehensive introductioAftare available [9, 7, 15].
The efficient runtime computation of dynamic sparse Jacoimatrices is the topic
of several recent contributions. There are two broad aghesmto dynamic sparse
AD.

The first approach uses results from sparsity pattern asddysgraph coloring
techniques in order to obtain the Jacobian from a compreassednediate dense
matrix [13, 8]. This is accomplished by inferring the spgrpiattern of the Jacobian
and analyzing it to determine an appropriate compressienabgr that is referred
to as theseed matrix. The dense intermediate matrix is computed using AD, and
the target sparse Jacobian is backed-out from it using #abreatrix. Since the AD
operations are performed in a dense format, they can be ingpited efficiently.
Advances in efficient dense AD implementations include tipe@tor Overload-
ing (OO) tools as described in [14, 1]. These approachestrédp® use of a lazy
evaluation generic metaprogramming technique known ageSspn Templates
(ET) [11, 10] in order to attain close to optimal dense AD @bien efficiencies.
The computational costs of the compression and de-compnesswever can be
significant and can involve heavy sparse memory bandwidtitdd operations. In
situations where the sparsity pattern is constant or is kreopriori, this cost may
be amortized since the seed matrix remains unchanged. lcotiitext of general
purpose predictive simulation this is not the case.

The second approach is intrinsically dynamic, and it usessgpvector datastruc-
tures to represent derivatives. The core computationabter direct runtime sparse
AD is a SParse-vector Linear Combination (SPLC). This isalbse the derivative
of any expression witlhk > 0 arguments can be expressed as a linear combination
of the k sparse vector derivatives of the expression argumemlt"ls;+ ook ckf;(.
SPLC operations perform sparsity structure inferencegaloith the computation
of the sparse Jacobian entries. Examples of implemengavith such a capability
include the SparsLinC module [4] within the Source Transfation tools ADI-
FOR [3] and ADIC [5]. Direct sparse treatment offers completntime flexibility
with transparent semantics. On the other hand, since thee@tional kernel con-
sists of a set of sparse vector operations, it is a challemg#din reasonable com-
putational efficiency on modern computer architecturesr&palgebra operations
involve a heavy memory bandwidth requirement leading t@motisly memory-
bound contexts[12]. Existing codes such as the SparsLin@uiegrovide various
sparse vector datastructures that attempt to hide the abdisnamic memory and
memory latency to some extent.
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1.1 Thiswork

This work extends the lazy evaluation performance optitrondechniques that are
applied in dense AD approaches to direct dynamic sparsityif@@ementations.
The extension requires two advances. The first, is to extemdatastructures and
construction mechanism of the ET technique to suit sparsitg second is to de-
velop single pass algorithms to execute SPLC expressions efiiciently.

Section 2 introduces the challenges of extending the classnpile-time ET
technique to support sparse arguments directly. A run-ittegnative form of ET
is developed. In particular, the run-time variant is desijto deliver competitive
levels of efficiency compared to static approaches whikeatliy supporting sparsity.

Section 3 reviews current SPLC algorithms and develops tennalte class of
single-pass SPLC evaluation algorithm. The algorithmgeteeSPLC expressions
involvingk sparse vectors in one go while improving the ratio of memagylaanch
instructions to floating point operations over currentraiidives.

Finally, Sect. 4 presents computational results usinggetacale Enhanced Oil
Recovery simulation.

2 Lazy evaluation techniques for dynamic sparsity

The compile-time (static) ET technique is a lazy evalua@@implementation that
overcomes the well-recognized performance shortcomingah OO [6]. Along
thepairwise evaluation process of OO, the ET technique generates expression graph
nodes instead of dense vector intermediate resultantseXpression nodes are al-
located on the stack, and they are meant to be completelgnizetil away by the
compiler. The execution of the expression is delayed umgiktxpression is assigned
to a cached dense vector variable. At that point, the exjoress executed with a
single fused loop.

Since dense linear combinations involve vectors of the sdimeension, the
single-pass loop is performed entry-by-entry. Each itenaproduces the appro-
priate scalar resultant by recursively querying parenesad the ET graph. The re-
cursion terminates at the leaf dense vectors which simplyméheir corresponding
entry. On the way out of the recursion, intermediate node®pa scalar operations
on the returned values and pass the resultant down alongc¢hesion stack.

The extension of the classic ET technique to SPLCs requiléeaent ET datas-
tructure. In sparse operations, non-zero entries do nayawoincide, and subse-
quently the depth of the fused loop is not known until thererfiPLC is executed.
Moreover, every node within the ET datastructure would reemaintain its own
intermediate scalar state. This implies that the ET nodes fsparse expression
grow recursively in size on the stack with no constraints foa tecursion depth.
This is exacerbated by the fact that OO intermediates hagenpdrary life-cycle,
and so ET nodes need to store parent nodes by value to avoddined behavior.
The exception to this is the leaf nodes since they refer tdovearguments that
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are persistent in memory. This costly situation suggestlzevin dynamic SPLC
expression datastructures that are inexpensive to builthéime.

Once they are multiplied through, forward mode derivatixpressions become
vector linear combinations. The SPLCs can be representadistyvhere each entry
is a pair of a scalar weight and a sparse vector argument.@witheir efficiency
of concatenation, singly linked list datastructures candes to efficiently store and
represent runtime SPLC expressions. In the proposed agipribee scalar operators
are overloaded to generate an SPLC list through three fuedtaibuilding blocks.
These three operations are illustrated Fig. 1.
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Fig. 1 SPLC expressions are represented by a one-directiona&diligt. The list is built by the
OO pairwise evaluation process involving three fundameparations only.

The first operation depicted in Fig. 1(a) involves the mlittgtion of a scalar
weight and a sparse vector argument. This operation wouldskd for example
whenever the chain rule is applied. Only in this operatiohngcessary to allocate
memory dynamically. Since the elements of SPLC expressianallocated dynam-
ically, their lifespan can be controlled explicitly. Subisently, nodes can be made
to persist beyond a statement’s scope and it is only aftentaleiation stage that the
SPLC expressions need to be freed.

The second operation is the multiplication of a scalar anellaCSsub-expression.
As illustrated in Fig. 1(b), this is accomplished most effidly by multiplying the
weights in the linked list through, leaving the dynamic meyniatact as is it re-
turned by the operator.

Finally, Fig. 1(c) illustrates the third building block;ehaddition of two SPLC
sub-expression, each containing one or more terms. Thé@udimply involves
the re-assignment of the tail pointer of one sub-list to ttachnode of the other. In
total, using dynamic memory pools, the run-time lists regj@i{k} operations.
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3 K-Way SPLC Evaluation kernels

Upon assignment to a resultant, the SPLC needs to be ev@luatéhis section,
we develop two evaluation algorithms that exploit the faeit allk arguments are
already available.

The first algorithm employs a caching implicit binary treegeneralize the
SparsLinC algorithms. The cached intermediate nodes storezero elemental in-
formation, thereby substantially reducing the number af-mero index compar-
isons and the associated memory bandwidth requiremenéssd@tond algorithm
is inspired by the seed matrix mappings used in other fornspafse AD. Before
presenting the two algorithms, we review the current apgrdéa SPLC evaluation
in AD tools.

The SparsLinC module generalizes a 2-way algorithm in écstaanner to ac-
commodate more arguments. The 2-way SPLC uses a runnintgptineach of
the two vector arguments. Initially both of the two pointare bound to the first
non-zero entry of its respective sparse vector argumeniievidbth running point-
ers have not completely traversed their respective vetterfpllowing sequence of
operations is performed. The column indices of the two migmiointers are com-
pared. If the nonzero entry column indices are equal, theemtaes are linearly
combined and inserted into the resultant. Both runningteoénare advanced. On
the other hand, if they are not equal, then the entry with thaller column index is
inserted, and only its running pointer is advanced. At theéarthe iteration, if one
of the two sparse arrays involves any remaining untravexagits, they are simply
inserted into the resultant. The SparsLinC module exed{H@&y combinations by
repeating this 2-way algorithm in a pairwise process.

3.1 K-way SPLC kernel 1: Caching nodal binary tree

This approach generalizes the pairwise evaluation pracessby SparsLinC in or-
der to perform the evaluation in one pass while minimizing ttumber of index
comparisons that are necessary. A binary tree is designeaitttain non-zero el-
emental state information at each node. This state infeoma&bnsists of a single
nonzero entry (a pair of an integer column index and a vaagjyell as a logical
index that maintains a nodesstivation. There are two types of nodes that make-up
the tree.

1. Terminal leaves are the parent terminal nodes, and ea€hmdfers to a SPLC
argument. A running pointer to the argument’s sparse vestoraintained. The
pointer is initialized to the sparse vector’s first nonzentrg Terminal leaves
areactive provided that their running pointer has not traversed thigeegparse
vector.

2. Internal nodes, including the terminal root node, have parents. Such nodes
maintain the linear combination nonzero resultant of thepanodes. Internal
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nodes also maintain a coded activation variable that djstéhes between each
of the following four scenarios:

a. Internal nodes are inactive if both parents are.

b. The left parent entry has a smaller column index than titet parent.
c. Theright parent’s column index is smaller than the left's

d. The column indices of both parents are equal.

(xxxx ) ( xxxx )
.\. /. .\. /. O\o /O O\o /O
o ./

\/

Fig. 2 A hypothetical SPLC expression and caching binary tree. [€ftesub-tree resultant is
a sparse vector with nonzero entries with low column indidéee right sub-tree resultant has
nonzero entries with large column indices. At the initi@gsts of the evaluation process (the first
four iterations), only the left sub-tree is queried for coluindex comparisons.

The evaluation is performed in a single pass process sjdrtim the root inter-
nal node. At each step in the fused evaluation loop, two sevEpological sweeps
are executed by recursion. The first sweep ig\aalyze Phase that labels the acti-
vation codes. The second sweep isfaiance Phase where all advance-able nodes
are visited to evaluate their nonzero entry value and to tgpiti@ running pointers
of the active leaf nodes. The iteration continues so londhagdot node remains
active.

Consider the hypothetical SPLC scenario illustrated in Bigrhe proposed al-
gorithm requires at most half of the number of comparisortsassociated reads
and writes as would be required by a SparsLinC kernel.

3.2 K-way SPLC kernel 2: Prolong-and-restrict dense
accumulation

This algorithm is inspired by the seed matrix approachegaose AD. As illustrated
in Fig. 3, the algorithm proceeds in a two stage process.dlopg phase (Fig. 3(a)),
each of th&k sparse array arguments is added into a zero-initializededeuffer. In
the restrict phase (Fig. 3(b)), the entire dense bufferigarsed to deduce the non-
zero entries producing a sparse resultant. This algoritrfopms poorly whenever
the dimension of the required enclosing dense buffer is lage compared to the
number of non-zero entries in the resultant. On the othed hahen that is not the
case, this algorithm is very effective as it uses a more &hvlermemory locality
profile and involves no branching in the prolong phase.
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(a) Prolong phase; sparse vectors are addé€l)tdRestrict phase; the dense intermediate is
a zero-initialized dense buffer. mapped to a sparse resultant.

Fig. 3 An illustration of the two stages of the prolong-and-restki-way SPLC kernel. In this
example, there are two SPLC argumefts; 2, with unit weights.

3.3 Summary

Expressions involving multiple arguments 2) can be evaluated more efficiently
usingk-way generalizations. In order to better characterize amdpare the perfor-
mance of the proposed algorithms, we introduce some didigr&®RLC parameters
which may all be computed efficiently during the SPLC list smaction process.
The first parameter is thispparent Dimension, N, that is defined as the difference
between the smallest nonzero entry column index and thesagplumn index in
the resultant of the SPLC expression. The second paramsetesNonzero Density,
0 < Ng < 1, which is the ratio of the number of nonzero entries in trsiltant of
the SPLC to the Apparent Dimension. Finally, the third pagtamis the number of
arguments in the expressi&n

The computational cost of the caching binary tree kernelearty independent
of Na. A worst-case scaling of the number of necessary memorysraad writes
goes as logk)Ng. This cost is asymptotically favorable to that attainedeoample
by the SparsLinC kernel which scaleskally. On the other hand, the cost of the
prolong-and-restrict dense accumulation kernel scalesapily with N, since the
prolong phase involves no branching.

4 Computational Examples

The OO lazy evaluation techniques discussed in this workbimplemented in a
comprehensive thread-safe generic C++ OO AD library [18] tomputes runtime
sparse Jacobians using the forward mode. The Automatidflrentiable Expres-
sion Templates Library (ADETL) provides generic datastites to represent AD
scalars and systems that can be univariate or multivagetesfically dense, sparse,
or block sparse). The library handles cross-datatype tipasaand implements
poly-algorithmic evaluation strategies. The choice of @Ghhique used depends
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on the type of derivatives involved in an AD expression. THeEAL treats uni-
variates with a direct pairwise evaluation. Dense muliatarexpressions involving
more than two arguments are treated using the classic Emitpah Finally, sparse
and block-sparse multivariate expressions are treatddthdt dynamic SPLC lists
and are evaluated using either of the two proposed kernels.

To illustrate the computational performance of the progoakgorithms for
sparse problems, we consider a number of hypothetical SRp@&gsions as well
as the computation of a block structured Jacobian matrswayifrom the numerical
discretization of a system of PDAEs.

4.1 Model SPLC numerical experiments

In order to empirically validate the computational cosati@ins discussed in Sect. 3.3,
we generate a number of synthetic SPLC expressions thabgpanion of the three
dimensional parameter space defineskbiM,, andNgy. In particular, we execute a
series of SPLC expressiofig cVk with k= 2,4,8,16, and 32 arguments. The ar-
gument sparse vecto¥4 and coefficientgy are generated randomly. By freezing
the Apparent DimensioNy = 10°, we can vanNg simply by varying the number
of nonzero entries used to generate the sparse vector angairiiée consider the
range 10°% < Ng < 107! that spans a wide range of levels of sparsity. Figure 4(a)
and Figure 4(b) show the empirical results obtained usiegbihary tree and the
prolong-restrict kernels respectively. The figures shoetbf the wall execution
time taken to construct and evaluate SPLC expressions aithngNy. Each curve
consists of results for a fixdd

o,

/gm‘ giu N, = 10° k=32
e g —
é 10" E © k=2 !
§ 1071 g 107
10 107 — 5 2
10 10 10 10
Nonzero Density, Ny Nonzero Density, Ny
(a) Binary tree kernel (b) Prolong-restrict kernel

Fig. 4 Performance comparisons of several SPLC evaluations tisengvo proposed kernels.
The test sparse vectors are generated randomly and havepanefsp DimensioriYa = 10°.

Clearly, the asymptotic behavior of the two algorithms itidict. The prolong-
restrict results show that for fairly lardéy, neither the number of arguments nor
the level of sparsityNy matter. These differences in computational cost lead to a
performance crossover point. The ADETL exploits this byf@ening install-time
measurements such as those presented in Fig. 4 in orderlyoegpply-algorithmic
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evaluation strategy that automatically selects the batggrithm for a given situa-
tion.

4.2 Model Problem Simulation Jacobian

The nonlinear residual and Jacobian evaluation routines3#neral Purpose Reser-
voir Simulator (GPRS) are re-written using the ADETL[16h€Toriginal GPRS
code was written using hand-coded Jacobian matrices imgjuthanual branch
fragments that encode a dynamic sparsity pattern. The GRRI&1inents fully cou-
pled implicit finite volume approximations of compressibtenpositional, thermal,
multi-phase flow in porous media[2]. The system of equatisna collection of
PDAEs of variable size and structure depending on the theéymemmic state.

8 1 Bis00 20 I
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(a) Pressure contour time snapshot (psi) (b) Gas saturation time snapshot

Fig. 5 Two sample state component snapshots for a simulationrpegtbusing the ADETL.

Figure 5 shows sample results obtained using the ADETL GRR@ng the
course of the simulation, 735 Newton iterations are peréatneach requiring the
evaluation of the residual and Jacobian. The total walllclimes taken by the
hand-differentiated and manually assembled GPRS is 288-3&e time taken by
the ADETL implementation is 287-secs, implying a total penfiance penalty of
21%. This penalty is considered minor compared to the imgutawnaintainability
and level of extendability of the new code.

5 Summary

The core kernel of runtime sparse Jacobian AD is a SPLC dparaft/e develop an
OO0 implementation that combines a dynamic form of ET alonitp wio alternate

k-way evaluation algorithms. Extensive use of the ADETL ivealeping general

purpose physical simulation software shows comparabfepeance compared to
hand-crafted alternatives.
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