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ABSTRACT 

 

 

 

Guotong Ren (Master of Science in Petroleum Engineering), 

 

A fully coupled geomechanics and multiphase flow and transport simulation model for 

naturally and hydraulically fractured reservoirs 

Directed by Rami Younis 

 

72, pp., Chapter 5: Conclusions 

 

(309 words) 

Unconventional reservoirs are typically comprised of a multicontinuum stimulated 

formation, with complex fracture networks that have a wide range of length scales and 

geometries. While hydraulic fractures may be propped with a varying concentration field 

of proppant, natural fractures are predominantly supported by pore pressure. A timely topic 

in the simulation of unconventional petroleum resources is in coupling the geomechanics 

of the fractured media to multiphase fluid flow and transport. This coupling is paramount 

towards the basic understanding of a number of important practical questions such as what 

causes the sudden loss of productivity in wells when neighboring wells are completed? 

To adequately capture the effects of the multiscaled fracture system in terms of both 

flow and geomechanics, we develop a mixed approach that fully couples an extended finite 

element method (XFEM)) to a hybrid multiphase flow model that couples an embedded-

discrete-fracture model (EDFM) with multiple interacting continua (MINC). 

This optimized model can reduce the computational cost that is associated with the 

widely applied unstructured mesh approaches; A Cartesian mesh is used and the two 
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numerical methods share this single conformal rectangular grid with embedded fractures 

for both mechanical deformation and fluid-flow problems. Owing to the hybrid continuum-

type models, a highly refined mesh is not necessary in order to obtain accurate strain/stress 

and pressure fields. The MINC concept allows the hybrid model to handle the extreme 

contrast in conductivity between the small-scale fracture network and the ultratight matrix 

that results in steep potential gradients. 

The strain-stress relationship in multi porosity media is used as a constitutive 

equation for coupling flow and rock mechanics. Moreover, assuming proppant preexists in 

the system, a proppant model is proposed to consider the influence on fracture aperture. 

We validate the accuracy of our approach using Mandle’s Problem and a pure 

mechanics single fracture problem. We present simulation results for scenarios with 

multiple fractures. 
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CHAPTER 1. 

  

INTRODUCTION 

 

 

 

 

 

1.1 Literature Review 

 

Reservoir geomechanics plays an important role in analyzing phenomena, such as 

subsidence, primary compaction drive, hydro fracturing, and wellbore stability and 

Quantification of the state of deformation and stress of the reservoir is essential for correct 

prediction of these phenomena (Jha and Juanes, 2007). Numerous studies have been taken 

on coupled flow and geomechanics simulation of conventional (unfractured) reservoir 

(Tran et al., 2002; Thomas et al. 2002; Chin et al., 1998; Jha and Juanes, 2007). In the past 

decade, unconventional reservoirs has become increasingly an important oil and gas 

resources in the United States. Unconventional reservoirs are comprised of an ultra-low 

permeability fractured matrix that may consist of multiple continua. Natural fractures form 

highly connected networks with a wide range of length scales. The fractures are primarily 

supported by pore pressure. Horizontal wells stimulated by hydraulic fractures that 

emanate from the wellbore along clusters within multiple stages. The fractures are 

supported by pore pressure as well as proppants that are delivered during the completions 

process. Empirical observations from field practice suggest that geomechanical effects may 

play a first-order role in production form unconventional reservoirs. It is frequently 

observed that the production rate in tight gas reservoirs declines rapidly in a manner that is 

believed to be closely related to the evolution of fracture aperture and permeability with 
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time (Huang and Ghassemi, 2012). Therefore, it is necessary and essential to develop a 

coupled flow and geomechanics simulator that can capture the influence of rock 

deformation and fracture aperture changes on field properties such as porosity and 

permeability. 

The fundamental of geomechanics are constructed on the concept of effective stress 

formulated by Terzaghi and Biot (Biot, 1941; Skempton, 1960). Terzaghi first proposed 

the relationship for effective stress for one dimensional case (Skempton, 1960). Later, Biot 

gave the quasi-static constitutive equations relate the strain tensor linearly to both the stress 

tensor (Berryman and Wang, 1995). and the fluid pressure and developed a generalized 

theory of 3D consolidation. However, in the reservoir where fractures are present, Biot 

poroelastic theory of single porosity is no longer applicable. Therefore, in order to 

characterize flow and deformation in the fractured reservoir, Barenblatt et al first 

introduced the dual-porosity/dual-permeability concept. In dual porosity theory, rock and 

fracture are represented by two different interacting continua blocks. Typically, rock 

continua is entirely surrounded by a thin layer of fracture continua. Since then dual porosity 

model got investigated by many researchers. Bai (1999) offered a more rigorous physical 

interpretation of dual porosity poroelastic (DPP). Two separate effective stress laws are 

applied in order to capture different extent of deformation of matrix and fractures. 

Berryman and Wang (1995) proposed a set of physical experiments to interpret the linear 

constitutive parameters in dual porosity model. Later Berryman (2002) determined those 

parameters through a more elegant fashion by using a new self-similar thought experiment. 

Kim extended dual porosity model from Berryman to multiple interacting continua method 

(MINC) by using the same idea of self-similar thought experiment to determine 
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coefficients of multiple porosity systems (Kim, 2012). Kim applied MINC idea to 

simulating fluid flow with chemical reaction in the fractured geothermal reservoir (Kim, 

2015). Another dual continuum concept, dual permeability method has been used for the 

coupled flow and geomechanics. (Huang and Ghassemi 2012; Wei and Zhang; 2010). The 

existing dual porosity approaches average fractures out and lose fracture information such 

as length, orientation and aperture. 

Another category of coupled flow and geomechanics method treats fracture 

explicitly. A vast literature is available on a number of numerical approach for explicitly 

dealing with fracture in coupled flow and geomechanics. Among all of these methods, 

fracture is expressed in a lower dimension. For example, if studied domain is three 

dimension, the fractures are described as 2D faces. Some researchers (Levonyan, 2011; 

Monteagudo et al., 2011; Garipov et al., 2014) employ a discrete fracture model (DFM) 

(Karimi-Fard et al., 2003) for flow model, in which a single static unstructured grid 

represents all the fractures as low-dimensional objects embedded within the matrix 

deformation. In order to describe poromechanics deformation, they duplicate nodes on the 

fracture (element interface) because addition degree of freedoms are needed. A good mesh 

generator which can handle very complicated geometry is a prerequisite. And it is only 

suitable to the problem where fractures are static. Otherwise, remesh and complicated post 

processing would be needed. Another semi-analytical method for fracture mechanics called 

boundary element method (BEM) or displacement discontinuity method (DDM) is widely 

used in coupled flow and geomechanics simulation. DDM, a special BEM was developed 

by Crouch (1976) and designed for handling problems with crack-like geometries. Wu 

(2015) applied the DDM on hydraulic fractures and horizontal wells. However, she 
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assumed fractures are embedded in an elastic domain and flow only occurs in fractures. 

McClure and Horne (2010) used DFM for flow and DDM for mechanics to simulate natural 

fracture reservoirs. Even though they considered flow in porous medium and its interaction 

between rock matrix and fractures, it is assumed that fracture deformation does not affect 

matrix fluid pressure and changes in matrix fluid pressure do not affect stress on fractures 

(McClure, 2015). Ganis et al. (2013) utilized symmetric Galerkin boundary element 

method (SGBEM) coupled with finite element method to capture deformation of porous 

media. Nevertheless, the error of this method is small only when domain size is large and 

fractures are not close to the boundary. A variational approach, phase-field method, to 

solving fracture problems recently is proposed. For example, Bourdin et al. (2012) 

formulated phase field in elasticity for hydraulic cracks. Later, Singh (2014) and Wick et 

al. (2015) extended the elasticity to poroelastic nature of the reservoir rock and used phase-

field method to study linear fracture propagation. With a phase-field approach, a lower-

dimensional crack surface is approximated as a diffusive transition zone characterized by 

a band width 2휀 , by a phase-field function 𝜑  (Wick et al., 2015). Phase-field method 

avoids relying on mesh generator and is able to handle complex fracture pattern. Recent 

years, extended finite element method (XFEM) (Moës et al., 1999, Belytschko, 2001) has 

been successfully implemented on the linear elastic fracture mechanics and its propagation. 

XFEM doesn’t need fracture to be aligned with grids and can achieve good precision 

without requiring a highly refined mesh. Later on, Lamb et al. (2010) developed a model 

that coupled XFEM with dual permeability method for poroelastic medium. 

In this thesis, a fully coupled XFEM-EDFM with dual porosity hybrid model is 

presented to accurately simulate fields of displacement and stress and fluid flow in 
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fractured reservoirs. EDFM is used to describe the fluid flow interaction between the 

porous matrix and primary fractures, while XFEM is used to address the discontinuous 

displacement field within elements which intersect fractures. . The dual porosity concept 

allows the hybrid model to handle the small-scale fracture network around primary 

fractures in SRV. The proposed hybrid method includes the effect of each hydraulic 

fractures explicitly without requiring the simulation mesh to conform to the fracture 

geometry and also avoids to explicitly represent natural fracture networks. Thus the 

challenges of high computational cost and the requirement for complex meshing technique 

associated with UDFM are overcome. The existing studies in the literature did not consider 

the effect of proppant. We propose a proppant model to simulate production from hydraulic 

fractures. In contrast, we consider that natural fractures are predominantly supported by 

pore pressure. The coupled system of nonlinear equations, boundary conditions and 

associated constitutive relations are solved by the Newton’s method using a fully-implicit 

formulation to ensure solution stability.  
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1.2 Outline 

 

The thesis is organized as follows: 

1. In Chapter 2, the theory of linear fracture elastic fracture mechanics is explained. A 

governing equation for poromechanics deformation is described. Then we introduce dual 

porosity model to capture the deformation of fine-scale natural fractures. An extended 

finite element method combined with proppant model is also proposed to precisely predict 

the hydraulic fracture (prime fractures) aperture change and the proppant deformation in 

hydraulic fractures. At the end of this chapter, weak form of the governing equation and 

finite element discretization are described. 

 

2. In Chapter 3, we first introduce the governing equations for fluid flow. Then the EDFM 

and dual porosity model are described. Next, Discretization of the EDFM and dual porosity 

model for fluid flow is formulated. The solution algorithm for solving the coupled system 

is explained in the end. 

 

3. In Chapter 4, we verify our model by analytical solutions. And we analyze the impact 

of dual porosity and proppant mechanics property on production. 

 

4. Chapter 5 concludes the .thesis with accomplishments and recommendations for future 

work.  
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CHAPTER 2 

 

POROMECHANICS DEFORMATION 

 

 

 

The objective of this chapter is to develop the weak form of the coupled XFEM-

dual porosity with proppant model and use the Galerkin method to formulate discretization 

of the weak form. 

 

 

2.1 Theory of Linear Elastic Fracture Mechanics 

 

Linear elastic theory predicts that stress at the tip of the crack tends to be infinite. 

Griffith (1921) first formulated a crack propagation criterion for brittle materials.  He 

succeeded in finding the relationship between crack size and fracture strength. Later in the 

middle 1950s, Irwin modified Griffith theory and introduced the concept of stress intensity 

factor (SIF) and energy release rate. Westergaard (1939) proposed an airy function as a 

solution to the crack problem in 2D.  
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Figure 2.1 stress components on an infinitesimal material element 

Fig. 2.1 Next, we will first introduce the equilibrium equations of stress. From Fig. 

2.1, the equation for equilibrium in 𝑥 direction can be written as  

 (𝜎𝑥 +
𝜕𝜎𝑥

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 − 𝜎𝑥𝑑𝑦𝑑𝑧 + (𝜏𝑥𝑦 +

𝜕𝜏𝑥𝑦

𝜕𝑦
𝑑𝑦)𝑑𝑧𝑑𝑥 − 𝜏𝑥𝑦𝑑𝑥𝑑𝑧 + 

 (τxz +
∂τxz

∂z
dz) dxdy − τxydxdy = 0 (2.1) 

We can write the similar forms in 𝑦 and 𝑧 direction. And these three equations from 

stress equilibrium equation under quasi-static state are the follows: 

 
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 0 (2.2a) 

 
𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
+

𝜕𝜏𝑥𝑦

𝜕𝑥
= 0 (2.2b) 

 
𝜕𝜎𝑧

𝜕𝑧
+

𝜕𝜏𝑧𝑥

𝜕𝑥
+

𝜕𝜏𝑧𝑦

𝜕𝑦
= 0 (2.2c) 

In two dimensional case, Eq. (2.2) could be reduced to  

 
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
= 0 (2.3a) 
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𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
= 0 (2.3b) 

 

Figure 2.2 A biaxially loaded infinite plate containing a crack 

Now, we can solve the problem of biaxially loaded plate with a central crack in Fig. 

2.2 The governing equation is the Eq. (2.3) , boundary conditions are given as follows 

 σy   =  0  for −a <  x <  +a and  y = 0 (2.4) 

 𝜎𝑥 = 𝜎∞ and 𝜎𝑦 = 𝜎∞ for 𝑥 →  ±∞ and 𝑦 →  ±∞ (2.5) 

 𝜎𝑦 = ∞ for 𝑥 = ±𝑎 and 𝑦 = 0 (2.6) 

Westergaard introduced a specific type of Airy stress function Φ using an analytic 

complex stress function 𝜙(𝑧) of which the first and second order integrals are assumed to 

exist: 

 Φ = Re�̅̅�(𝑧) + 𝑦 ∙ Im�̅�(𝑧) (2.7) 
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Where �̅�(𝑧), �̅̅� = first and second order integrals of 𝜙(𝑧) respectively and 𝑧 = 𝑥 + 𝑖 ∙ 𝑦.  

Airy stress functions give us  

 𝜎𝑥 =
𝜕2Φ

𝜕𝑦2 , 𝜎𝑦 =
𝜕2Φ

𝜕𝑦2 , 𝜏𝑥𝑦 = −
𝜕2Φ

𝜕𝑥𝜕𝑦
   (2.8) 

And if we plug Eq. (2.7) into Eq. (2.8), we can get the expressions for stress. 

 𝜎𝑥 = Re𝜙(𝑧) − 𝑦 ∙ Im𝜙′(𝑧) (2.9) 

 𝜎𝑥 = Re𝜙(𝑧) + 𝑦 ∙ Im𝜙′(𝑧) (2.10) 

 𝜏𝑥𝑦 = −𝑦 ∙ Re𝜙′(𝑧) (2.11) 

In the region near the crack tip, the solution above can be simplified into the 

following form: 

 𝜎𝑥 =
𝜎√𝜋𝑎

√2𝜋𝑟
cos

𝜃

2
(1 − sin

𝜃

2
sin

3𝜃

2
) (2.12) 

 𝜎𝑦 =
𝜎√𝜋𝑎

√2𝜋𝑟
cos

𝜃

2
(1 + sin

𝜃

2
sin

3𝜃

2
) (2.13) 

 𝜏𝑥𝑦 =
𝜎√𝜋𝑎

√2𝜋𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2
 (2.14) 

Where 𝑟, 𝜃 consist of the local polar system located at the crack tip. In the Fig. 2.3, it shows 

the polar system at the crack tip. 

 

Figure 2.3 The polar coordinate system associated with the crack tip 
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A function 𝜙 that satisfies equilibrium equations and boundary conditions is given 

as the following: 

  𝜙 =
𝜎∞

√1−
𝑎2

𝑧2

  (2.15) 

Where 𝑎 is the half crack length. 

 We can also get a useful expression of crack opening displacement for 2D domain. 

 COD =
2𝜎∞

𝐸′
√𝑎2 − 𝑥2 (2.16) 

Where 𝐸′ = 𝐸 in the plane stress condtion, 𝐸′ =
𝐸

1−𝑣2
 in the plane strain condition. 𝐸, 𝑣 are 

the Young’s modulus and Poisson’s ratio respectively. 
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2.2 Force Equilibrium Equation 

 

 

Figure 2.4. A body in a state of elastostatic equilibrium 

Fig. 2.4 shows a body with a fracture under equilibrium state. 𝒏𝑡 is the unit outward 

normal vector to the external boundary, 𝒕  is the prescribed traction applied on the 

boundary,  �̅� is prescribed displacement on the external boundary. On the inner fracture 

boundary 𝛤𝑐, fracture pore pressure  𝑝𝑐 is exerted on  fracture inner faces. The two unit 

outer normal vectors on two fracture faces are 𝒏𝑐
+ and 𝒏𝑐

−. 

The governing equation for poromechanics under quasi-static assumption is: 

 ∇ ⋅ 𝝈 + 𝜌𝑏𝒈 = 0  (2.17) 

Where 𝝈 is Cauchy total stress tensor and 𝜌𝑏 is the bulk density. 

The boundary conditions are given as: 

 𝝈 ⋅ 𝒏𝑡 = 𝒕 on 𝛤𝑡 (2.18a) 

 𝒖 = 𝒖       on 𝛤𝑢 (2.18b) 

 𝝈 ⋅ 𝒏𝑐
− = −𝛔 ⋅ 𝒏𝒄

+ = −𝑝𝑐𝒏c
+ = 𝑝𝑐𝒏𝒄

− = 𝑝𝑐𝒏𝒄 = �̅� on 𝛤𝑐 (2.18c) 
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Here we assume the infinitesimal transformation, from which the strain tensor 

defined as the symmetric gradient of the displacement  

 𝜺 =
1

2
(𝛻𝒖 + 𝛻𝑇𝒖)  (2.19) 

And the volume strain 𝜖𝑣 = 𝑡𝑟𝑎𝑐𝑒(𝜺). 

 

2.3 Dual Porosity 

 

 

Natural fractures near hydraulic fractures have a significant impact on increasing 

the mobility of fluid in the reservoir. However, treating complicated natural fracture pattern 

explicitly by EDFM and XFEM is difficult and also causes expensive computational cost. 

In characterizing flow and deformation between matrix and fractures, an extension from 

single porosity (Biot, 1957) to dual porosity concept (Barenblatt, 1960) is applied to 

address the problem. DPP provided by Bai (1999) which has a rigorous physical 

interpretations of dual porosity model is implemented in the simulator.  

In Bai’s model, instead of using only one effective stress law (Wilson and Aifantis, 

1982), two separate effective stress laws for fracture and matrix are assumed as follows: 

 𝝈𝑚 = 𝝈𝑚
′ − 𝛼𝑚𝑝𝑚𝑰   (2.20a) 

 𝝈𝑓 = 𝝈𝑓
′ − 𝛼𝑓𝑝𝑓𝑰 (2.20b) 

Where 𝝈𝑚  and 𝝈𝑓  are total stress for matrix and fracture separately. 𝝈𝑚
′  and 𝝈𝑓

′  are 

effective stress for matrix and fracture. 𝛼𝑚 and 𝛼𝑓 are Biot’s coefficients for matrix and 

fracture and have a value between porosity and unity.  
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Figure 2.5. schematic dual porosity system 

The relationship between matrix and fracture is shown in the Fig. 2.5. The model 

assumes matrix surrounded by orthogonal intersecting fracture. After deformation, total 

stresses in each continuum are kept equal, 

 𝝈 = 𝝈𝑚 = 𝝈𝑓  (2.21) 

Whereas, total strain are summed from those of two media. 

  𝜺 = 𝜺𝑚 + 𝜺𝑓  (2.22) 

From Eq. (2.20) to (2.22) and Hooke’s Law, a modified effective stress law can 

be written as: 

 𝝈 = 𝐷𝑚𝑓: 𝜺 − 𝐷𝑚𝑓: 𝐶𝑚: 𝛼𝑚𝑝𝑚𝑰 − 𝐷𝑚𝑓: 𝐶𝑓: 𝛼𝑓𝑝𝑓𝑰  (2.23) 

Where 𝐷𝑚𝑓  is fourth order elastic stiffness tensor evaluated from property of 

matrix and fracture. 𝐶𝑚  and 𝐶𝑓  are compliance tensor for matrix and fracture. In this 

thesis, we assume linear elastic property for both matrix and fracture. 𝐶𝑚 and 𝐶𝑓 for the 

two dimensional case will be : 
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 𝐶𝑚 =
1

𝐸′
[

1 −𝑣′ 0
−𝑣′ 1 0
0 0 1 + 𝜈′

] (2.24) 

Where 𝐸′ = 𝐸 and 𝑣′ = 𝑣 for plane stress, and 𝐸′ =
𝐸

1−𝑣2
 and 𝑣′ =

𝑣

1−𝑣
 for plane strain. 

 𝐶𝑓 =
1

𝑆

[
 
 
 
 

1

𝐾𝑛
0 0

0
1

𝐾𝑛
0

0 0
1

𝐾𝑠ℎ]
 
 
 
 

  (2.25) 

Where 𝑆 is fracture spacing. 

And for the convenience of derivation in the later part, we define the following 

variables: 

 𝛼𝑚
∗ = 𝛼𝑚𝐷𝑚𝑓: 𝐶𝑚 (2.26a) 

 𝛼𝑓
∗ = 𝛼𝑓𝐷𝑚𝑓: 𝐶𝑓 (2.26b) 

The advantage of the model is that it includes two sets of parameters of matrix and 

fracture. Consequently it considers the matrix and fracture deformation individually. The 

Eq. (2.23) indicates that the integrated matrix and fracture system deforms in a same 

manner where 휀 is the total strain for the system. In the simulator, Eq. (2.23) is used as the 

effective stress law for dual porosity. After displacement fields are solved, strain for each 

continuum can be obtained from Eq. (2.20) to (2.22). 

 

2.4 Proppant Model 

 

 

Proppants in hydraulic fractures resist closure of fractures thus play a significant 

role in unconventional reservoir production. However, because of interaction between 

proppant and hydraulic surfaces, proppant may be deformed, embedded or crushed in the 
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fractures. Numerous experimental and analytical studies have investigated these three 

factors (deformation, embedment and crush) causing reduction in fracture conductivity and 

production. (Mindlin and Deresiewicz, 2013; Huitt and Mcglothlin, 1958; Huiit et al., 

1959; Volk et al., 1981; Guo, 2008; Lacy et al., 1998; Li et al., 2015). We can get the 

following conclusions from the research mentioned above: 

1. The condition of sand propping would crush rather than embed under the weight 

of overburden (Huiit et al., 1959) 

2. Many factors such as rock property, proppant size and mechanical property, 

concentration of proppant-paving etc. could influence embedment of the proppant. 

3. As the elastic modulus of coalbed (embedment surface) increases, the change 

in fracture aperture gradually approaches the proppant deformation, and the proppant 

embedment approaches zero. ( Li et al., 2015) 

Few research has investigated numerical analysis of proppant behaviors in 

hydraulic fractures. Here we propose a simple proppant model for hydraulic fractures. No 

conductivity lost caused by proppants is assumed and the proppant obeys linear elastic 

behaviors. We also consider elastic modulus of embedment surface is larger than that of 

proppant so that reduction in fracture aperture is mainly caused by proppant deformation. 

We define the force exerted on fracture faces by proppants as 𝑝𝑝. 
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(a) Initial 

 

(b) Deformed 

Figure 2.6 Initial and Deformed configuration 

of propants in the discretized fracture (2D) 

During production process, decrease of hydraulic fracture pressure causes a 

tendency of fracture closure. However, when proppant is present, deformed proppants will 

exert force on fracture faces and resist closure. According to the Hooke’s Law, the pressure 

𝑝𝑝 caused by proppant will be  

 𝑝𝑝 = {
𝐸𝑝

−𝒘⋅𝒏𝑐

𝐷𝑖
          𝒘 ⋅ 𝒏𝑐 < 𝟎

0                                      𝑒𝑙𝑠𝑒
 (2.27) 

Where 𝐸𝑝 is the Young’s modulus of proppants,  𝒘 is the fracture opening displacement, 

𝐷𝑖 is the initial fracture aperture. Eq. (2.27) shows that a proppant is only effective when 

fracture aperture is being decreased. 
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2.5 Introduction to XFEM 

 

 

To model the discontinuity field, enrich based FEM are applied a lot nowadays. 

The enrichment is realized through the basic mathematical foundation of the partition of 

unity finite element method (PUFEM) was discussed by Melenk and Babuška (1996). The 

global solution of PUFEM has been the theoretical basis of the extended finite element.  

XFEM has a lot of advantages. One new feature of XFEM is that only local parts 

of the domain are enriched and this localization is achieved by enriching a subset of nodes 

(Moës et al. 1999).  And cost of computation is reduced much more because of localized 

enrichment. Moreover, many more complicated physical phenomenon are also easier to 

simulate by means of XFEM. Because fractures are independent representation of the entire 

crack from the mesh, no re-meshing is required when fracture propagation is involved.  

And it is easy to extend to heterogeneous or even nonlinear mechanical property problems. 

In Fig. 2.7, the different types of elements (standard, blending, enriched) and nodes 

(standard, Heaviside enriched, Tip function enriched) are shown. In the standard and 

enriched element, partition of unity is satisfied. The blending element is no longer a 

partition of unity. Nevertheless, it has little direct effect on the approximation because 

blending element does not include singularity. The appearance of blending elements 

especially for those near fracture tip could decrease the convergence rate of XFEM (Fries 

and Belytschko, 2010). 
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Figure 2.7 different types of elements and nodes 

For X-FEM, Moës et al. (1999) proposed an equation that can model crack surfaces 

and tips by step functions and asymptotic near-tip fields. The finite element approximation 

for a single crack in a two-dimensional body can be written as: 

 𝒖𝒉(𝒙) = ∑ 𝑁𝑖(𝑥)𝒖𝒊𝑖∈𝐼 + ∑ 𝑁𝑖(𝑥)𝐻(𝜉(𝑥))𝒂𝑖𝑖∈𝐿 +  

 ∑ 𝑁𝑖(𝑥)(∑ 𝐹𝑙(𝑥)𝒃𝑖,1
𝑙4

𝑙=1 )𝑖∈𝐾1
+ ∑ 𝑁𝑖(𝑥)(∑ 𝐹𝑙(𝑥)𝒃𝑖,2

𝑙4
𝑙=1 )𝑖∈𝐾2

 (2.28) 

Where 𝐼 is the set of all nodes in the mesh; 𝒖𝑖 is the classical degree of freedom at node 𝑖; 

𝑁𝑖  is the shape function associated with node 𝑖 . 𝐿 ⊂ 𝐼  is the subset of nodes that are 

enriched for the crack discontinuity and 𝒂𝑖  are corresponding additional degrees of 

freedom; the nodes in 𝐿 are such that their support (elements that are connected by a node) 

intersects the crack but do not contain any of its crack tips; and 𝐾1 ⊂ 𝐼 and 𝐾2 ⊂ 𝐼 are the 

subset of nodes that are enriched for the first and second crack tip, respectively. The 

corresponding additional degrees of freedom are 𝒃𝑖,1
𝑙  and 𝒃𝑖,2

𝑙 , 𝑙 = 1,… ,4 ,for the first and 

second crack tip, respectively.  

https://scholar.google.com/citations?user=rC0o2lEAAAAJ&hl=en&oi=sra
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Illustration of signed distance function is shown in Fig. 2.8, its definition is given 

as the following: 

 𝜉(𝒙) = 𝑚𝑖𝑛 ‖𝒙 − 𝒙𝛤 ‖𝑠𝑖𝑔𝑛(𝒏 ⋅ (𝒙 − 𝒙𝛤)) (2.29) 

Where 𝒙Γ is projection of 𝒙  onto an arbitrary surface. 𝒏 is the unit out normal vector of 

the surface. 

 

 

Figure 2.8 Schematic  of signed distance function 

Heaviside Function is defined as: 

 𝐻(𝜉) = {
1 ∀𝜉 > 0

−1 ∀𝜉 < 0
  (2.30) 

The near tip enrichment functions have already been defined in terms of local crack 

tip coordinate system(𝑟, 𝜃). Note that only the first function in Eq. (2.31) is discontinuous 

across the surface (±𝜋) whereas the other three functions are continuous.  

 𝐹𝑙(𝑟, 𝜃) = {√𝑟 𝑠𝑖𝑛
𝜃

2
, √𝑟 𝑐𝑜𝑠

𝜃

2
, √𝑟 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛

𝜃

2
, √𝑟 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠

𝜃

2
} (2.31) 
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To model discontinuity, virtual nodes are imposed onto the standard nodes and 

combined with classical finite element method to approximate displacement field. In order 

to clarify how this method works, we will illustrate it through a one dimensional problem 

which consists of four nodes and three elements with a strong discontinuity. There is a 

discontinuity between node 2 and 3. In Fig. 2.10 and Fig. 2.11, the approximation function 

at the left and right discontinuity point is totally different. And if the approximation 

function is added to the standard finite element shape function, discontinuous displacement 

field will be obtained. We also notice that the displacement at each node in Fig. 2.10 is the 

following: 

 𝒖𝒉 = 𝒖𝒊 + 𝐻(𝜉𝑖)𝒂𝒊 (2.32) 

At each node, the displacement is not equal to 𝒖𝒊, which does not satisfy the interpolation. 

However, in Fig. 2.11, because of the shifted function, 𝒖ℎ = 𝒖𝒊, shift function will not 

cause any blending any elements either. 

  



 22 

 

Figure 2.9 Standard shape function for node 2 and 3 

 

Figure 2.10 Enriched shape function for node 2 and 3 

 

Figure 2.11 Shifted enriched function for node 2 and 3 
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2.6 Weak Form and coupled XFEM with Dual Porosity Discretization 

 

 

 

2.6.1 Weak Form 

 

The weak form of equilibrium equation (neglecting body force) is given by (Chen 

2013, Khoei 2014, Mohammadi 2008) and we extend it to include dual porosity and 

proppant models.  

The space of the admissible solution for displacement 𝒖 is defined as: 

 𝒰 = {𝐯 ∈ 𝒱, 𝐯 = �̅� on Γ𝑢, 𝐯 discontinous on Γ𝑐} (2.33) 

Where the space 𝒱 is related to the regularity of the solution in which 𝐯 is discontinuous 

over the fracture. The test function is defined similarly as: 

 𝒰0 = {𝐯 ∈ 𝒱, 𝐯 = 0 on Γ𝑢, 𝐯 discontinous on Γ𝑐} (2.34) 

The weak form is to find 𝒖 ∈ 𝒰  such that the solution satisfies equilibrium 

equation. The weak form is derived by Galerkin method and given by: 

 ∫ 𝛿𝜺:𝐷𝑚𝑓: 𝜺𝑑𝛺
𝛺

= ∫ 𝛿𝜺: 𝛼𝑚
∗ 𝑝𝑚𝑰𝑑𝛺

𝛺
+ ∫ 𝛿𝜺: 𝛼𝑓

∗𝑝𝑓𝑰𝑑𝛺
𝛺

+  ∫ 𝛿𝒖 ⋅ 𝒕𝑑𝛤𝑡𝛤𝑡
 

 +∫ (𝛿𝒖+ − 𝛿𝒖−) ⋅ �̅� 𝑑𝛤𝑐𝛤𝑐
+ + ∫ (𝛿𝒖+ −   𝛿𝒖−) ⋅ 𝒑𝑝𝑑𝛤𝑐𝛤𝑐

+   (2.35) 

Where 𝛿𝒖 and 𝛿𝜺 are virtual displacement and strain respectively. We assume that matrix 

pore pressure 𝑝𝑚 and natural fracture pressure 𝑝𝑓 that is effective only on normal direction. 

Shear force is neglected on matrix caused by fluid flow. On the outer boundary 𝛤𝑡, which 

is the boundary of the reservoir, force 𝒕 is applied. On the inner boundary or discontinuity 

boundary 𝛤𝑐
+ or 𝛤𝑐

−, 𝒖+ and 𝒖− are displacements on the fracture upper and lower faces 

separately. Besides fluid pressure �̅�, proppant force 𝒑𝑝is also considered and only active 

where  fracture has a tendency to close. 
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We can write out equation calculating crack opening displacement 𝒘: 

 𝒘 = 𝒏𝒄 ⋅ (𝒖+ − 𝒖−)𝒏𝒄  (2.36) 

Eq. (2.35) can be simplified by substitution of Eq. (2.36). Then the equation will be 

like: 

 ∫ 𝛿𝜺:𝐷𝑚𝑓: 𝜺𝑑𝛺
𝛺

= ∫ 𝛿𝜺: 𝛼𝑚
∗ 𝑝𝑚𝑰𝑑𝛺

𝛺
+ ∫ 𝛿𝜺: 𝛼𝑚

∗ 𝑝𝑓𝑰𝑑𝛺
𝛺

+ ∫ 𝛿𝒖 ⋅ 𝒕𝑑𝛤𝑡𝛤𝑡
+ 

  ∫ 𝛿𝒘 ⋅ (�̅� + 𝒑𝑝) 𝑑𝛤𝑐𝛤𝑐
+   (2.37) 

 

2.6.2 Discretization 

Using the standard Galerkin procedure to discretize the system results a system of 

linear equilibrium equations. 

 𝑲𝒖ℎ = 𝐟  (2.38) 

Where 𝑲 is global stiffness matrix, 𝒖ℎ is the degree of freedoms for both standard nodes 

and enriched nodes and 𝐟 is the force vector. We usually assemble stiffness matrix and 

force vector element by element. In each element, the local stiffness matrix 𝑲𝑒 and 𝐟𝒆 has 

the following pattern: 

 𝑲𝑒 = (

𝐾𝑖𝑗
uu 𝐾𝑖𝑗

ua 𝐾𝑖𝑗
ub

𝐾𝑖𝑗
au 𝐾𝑖𝑗

aa 𝐾𝑖𝑗
ab

𝐾𝑖𝑗
bu 𝐾𝑖𝑗

ba 𝐾𝑖𝑗
bb

) (2.39) 

and  

 𝐟𝑒 = (𝐟i
u, 𝐟i

a, 𝐟i
bα) (2.40) 

Where 𝑖, 𝑗 is the node number which ranges from 1 to 4 in each element. 𝛼 varies from 1 

to 4. u, a, bα represent standard, Heaviside, Tip function enriched node respectively. With 
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the linear fracture, each node in the element with a fracture tip in it is enriched by four 

asymptotic functions Eq. (2.31).  

In each element, element stiffness matrix 𝑲𝑖𝑗
𝑟𝑠  and force vectors 𝐟𝑖

u , 𝐟𝑖
a , 𝐟𝑖

bα  are 

defines as: 

 𝑲𝑖𝑗
𝑟𝑠 = ∫ (𝐁𝑖

r)T𝐷𝑚𝑓𝐁𝑗
s𝑑Ω𝑒Ω𝑒

(r, s = u, a, b𝛼)(𝑖, 𝑗 = 1. .4) (2.41) 

 𝐟𝑖
u = ∫ 𝑁𝑖𝐭d𝛤𝑡𝛤𝑡

+ ∫ (𝐁𝑖
𝐮)T(𝛼𝑓

∗𝑝𝑓 + 𝛼𝑚
∗ 𝑝𝑚)𝑑Ω𝑒Ω𝑒

 (2.42) 

 𝐟𝑖
a = ∫ 𝑁𝑖𝐻𝐭d𝛤𝑡𝛤𝑡

+ ∫ 2𝑁𝑖(�̅� + 𝒑𝑝)𝑑𝛤𝑐𝛤𝑐
+ ∫ (𝐁𝑖

a)T(𝛼𝑓
∗𝑝𝑓 + 𝛼𝑚

∗ 𝑝𝑚)𝑑Ω𝑒Ω𝑒
(2.43) 

 𝐟𝑖
bα = ∫ 𝑁𝑖𝐹𝛼𝐭d𝛤𝑡𝛤𝑡

+ ∫ 2𝑁𝑖𝐹1(𝑟, 𝜃 = 𝜋)(�̅� + 𝒑𝑝)𝑑𝛤𝑐𝛤𝑐
+  

 ∫ (𝐁𝑖
𝛼)T(𝛼𝑓

∗𝑝𝑓 + 𝛼𝑚
∗ 𝑝𝑚)

Ω𝑒
𝑑Ω𝑒 (2.44) 

 𝐁𝑖
u = [

𝑁𝑖,𝑥 0

0 𝑁𝑖,𝑦

𝑁𝑖,𝑦 𝑁𝑖,𝑥

] (2.45) 

 𝐁𝑖
a = [

𝑁𝑖[𝐻(𝜉) − 𝐻(𝜉𝑖)],𝑥 0

0 𝑁𝑖[𝐻(𝜉) − 𝐻(𝜉𝑖)],𝑦
𝑁𝑖[𝐻(𝜉) − 𝐻(𝜉𝑖)],𝑦 𝑁𝑖[𝐻(𝜉) − 𝐻(𝜉𝑖)],𝑥

]  (2.46) 

 𝐁𝑖
b𝛼 = [

[𝑁𝑖(𝐹𝛼 − 𝐹𝛼𝑖)],𝑥 0

0 [𝑁𝑖(𝐹𝛼 − 𝐹𝛼𝑖)],𝑦
[𝑁𝑖(𝐹𝛼 − 𝐹𝛼𝑖)],𝑦 [𝑁𝑖(𝐹𝛼 − 𝐹𝛼𝑖)],𝑥

] (𝛼 = 1,2,3,4)  (2.47) 

Where 𝐁𝑖
u  is the derivative of standard node shape function. 𝐁𝑖

a  is the derivative of 

Heaviside enrichment  shape function. 𝐁𝑖
b𝛼  is the derivative of tip enrichment shape 

function. 
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2.6.3 Numerical Integration 

The Gauss quadrature rule is successfully being used for the numerical integration 

in finite element analysis. For polynomial integrand, the Gauss quadrature is proved to be 

correct. However, in the XFEM, we introduce the linear discontinuous function which is 

Heaviside function and nonlinear, singular and discontinuous function which is tip 

enrichment functions. Poor accuracy can be achieved without any special treatment. Next, 

we will apply two different numerical integration schemes especially for Heaviside 

enrichment and tip enrichment shape functions respectively. 

For the element cut by a crack, Dolbow (1999) proposed two methods to overcome 

this integration difficulty. In the first method, element that is cut by fracture is subdivided 

into many sub triangles. Ordinary Gauss quadrature rule is performed on each sub triangle 

where the integrand is continuous polynomial. The second one is to subdivide element into 

sub-quads. Compared to the second method, the first one should be more efficient and 

accurate. The first method is illustrated in the Fig. 2.12. 

 

Figure 2.12 Partition of the element with sub triangles 
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For the element containing crack tips, the derivative of the tip enrichment shape 

functions will introduce singularity term as well as discontinuity. Thus a special quadrature 

rule is highly recommended for singular integrand. Owing to high gradients near the 

singularity, a concentration of integration points in the vicinity of the singularity improves 

the results significantly. The numerical integration procedure is listed below: 

1. Element is subdivided into sub-triangles. 

2. Tensor product-type Gaussian quadrature rule is performed on each sub-triangular 

elements 

3. Sum up the integration values from each sub elements 

The idea of Tensor product-type Gaussian quadrature rule is to transform the 

standard triangular element 𝑇𝑠𝑡 to the standard quadrilateral element 𝑅𝑠𝑡  and then apply 

Gauss quadrature for 𝑅𝑠𝑡. The advantage of this method is that the location of the Gauss 

points is concentrated on a relatively small region near one vertex. The following picture 

shows the procedure of the numerical integration for elements containing tips. 
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Figure 2.13 Integration points in an element containing a singularity (Fries and 

Belytschko, 2010) 
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CHAPTER 3 

 

FLUID FLOW MODELS 

 

 

In this session, we shall derive mass balance equations for two phase black oil in 

deformable porous media. The development of the system of the governing equations is 

based on the following general assumptions:  

1. Rock behaves as isothermal linear poroelasticity,  

2. Geomechanics process is under quasi-static equilibrium.  

3. The deformation of the porous media is infinitesimal.  

We will introduce the flow modes, EDFM and dual porosity model for fluid flow. 

In the following poromechanics equations, the sign convention is adopted positive for 

tension and negative for compression. 

 

3.1 Governing Equation for single fluid flow 

 

The primary variables in the resulting system of governing equations are the fluid 

pressure (𝑝) and displacement (𝑢). First we derive the single phase flow equation in 

deformable porous media.  

Mass Conservation of the solid phase:  

 
𝜕𝜌𝑠(1−𝜙)

𝜕𝑡
+ ∇ ⋅ (𝜌𝑠(1 − 𝜙)𝑽𝑠) = 0  (3.1) 

Mass Conservation of the fluid phase:  

 
𝜕𝜌𝑓𝜙

𝜕𝑡
+ ∇ ⋅ (𝜌𝑓𝜙𝑽𝑓) = 0  (3.2) 
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Where 𝜌𝛼 is the phase density, 𝜙 is the porosity, 𝑽𝛼is the phase velocity. 𝛼 = solid phase 

(𝑠), fluid phase (𝑓) . 

 
𝜕𝜌𝑓𝜙

𝜕𝑡
+ ∇ ⋅ (𝜌𝑓𝜙𝑽𝑠) + ∇ ⋅ (𝜌𝑓𝜙(𝑽𝑓 − 𝑽𝑠)) = 0  (3.3) 

And the third term in Eq. (3.3) on the left can be replaced by Darcy’s velocity 

 
𝜕𝜌𝑓𝜙

𝜕𝑡
+ 𝜌𝑓𝜙∇ ⋅ (𝑽𝑠) + 𝑽𝑠 ⋅ ∇(𝜌𝑓𝜙) + ∇ ⋅ (𝜌𝑓𝑽

𝐷) = 0   (3.4) 

Now, we define material derivative as the following: 

 
𝐷( )

𝐷𝑡
=

𝜕( )

𝜕𝑡
+ 𝑽𝒔 ⋅ ∇( )  (3.5) 

Then, we can write the Eq. (3.4) in terms of using material derivative. 

 
𝐷(𝜌𝑓𝜙)

𝐷𝑡
+ 𝜌𝑓𝜙∇ ⋅ (𝑽𝑠) = −∇ ⋅ (𝜌𝑓𝑽𝐷) (3.6) 

Eq. (3.1) follows the same procedure and the result is: 

 ∇ ⋅ 𝑽𝑠 = −
1

(1−𝜙)𝜌𝑠

𝐷(1−𝜙)𝜌𝑠

𝐷𝑡
  (3.7) 

 

If we assume a constant solid mass (𝐷(𝜌𝑠𝑉𝑠) = 0), and using 𝜙 =
𝑉𝑝

𝑉𝑏
= 1 −

𝑉𝑠

𝑉𝑏
, (𝑉𝑏 

, 𝑉𝑝 and 𝑉𝑠 are the bulk, pore and solid volume respectively), we can further simplify the 

Eq. (3.7) into: 

 ∇ ⋅ 𝑽𝑠 =
1

𝑉𝑏

𝐷𝑉𝑏

𝐷𝑡
  (3.8) 

From the definition of volume strain, we know that: 

 𝜖𝑣 =
𝐷𝑉𝑏

𝑉𝑏
  (3.9) 

Thus, Eq. (3.9) substitutes into Eq. (3.8) and we get: 

 ∇ ⋅ 𝑽𝑠 =
𝐷𝜖𝑣

𝐷𝑡
  (3.10) 
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Therefore, divergence of solid phase velocity only reflects rate of bulk volume changes. 

Next we substitute Eq. (3.10) above into the fluid flow Eq. (3.6) and we get: 

 
𝐷(𝜌𝑓𝜙)

𝐷𝑡
+ 𝜌𝑓𝜙

𝐷𝜖𝑣

𝐷𝑡
= −∇ ⋅ (𝜌𝑓𝑽

𝐷)  (3.11) 

We add and subtract the term 𝜖𝑣
𝐷𝜌𝑓𝜙

𝐷𝑡
 into Eq. (3.11): 

 
𝐷(𝜌𝑓𝜙)

𝐷𝑡
+ 𝜌𝑓𝜙

𝐷𝜖𝑣

𝐷𝑡
+ 𝜖𝑣

𝐷𝜌𝑓𝜙

𝐷𝑡
− 𝜖𝑣

𝐷𝜌𝑓𝜙

𝐷𝑡
= −∇ ⋅ (𝜌𝑓𝑽

𝐷)  (3.12) 

Then the second and third term in the left hand side can be combined into one: 

 
𝐷(𝜌𝑓𝜙)

𝐷𝑡
+

𝐷𝜌𝑓𝜙𝜖𝑣

𝐷𝑡
− 𝜖𝑣

𝐷𝜌𝑓𝜙

𝐷𝑡
= −∇ ⋅ (𝜌𝑓𝑽

𝐷)  (3.13) 

Now we recall the assumption that the deformation is infinitesimal, which means 

𝜖𝑣 is very small. Therefore, the third term in the left hand side 𝜖𝑣
𝐷𝜌𝑓𝜙

𝐷𝑡
 is much smaller 

compared to the first term and can be neglected. Thus the Eq. (3.13) is written as the 

following: 

 
𝐷𝜌𝑓𝜙(1+𝜖𝑣)

𝐷𝑡
= −∇ ⋅ (𝜌𝑓𝑽

𝐷)  (3.14) 

We usually define 𝜙∗ = 𝜙(1 + 𝜖𝑣) as the fluid traction or the Lagrangian porosity. 

Because of the infinitesimal deformation, the Lagrangian description and Eulerian 

description is the same as each other. Therefore, 𝜕( )/𝜕𝑡 ≈ 𝐷( )/𝐷𝑡 . Finally, the 

governing equation considering geomechanics effect for fluid flow (no source/sink term) 

is written as the following: 

 
𝜕𝜌𝑓𝜙∗

𝜕𝑡
= −∇ ⋅ (𝜌𝑓𝑽

𝐷)  (3.15) 

In the section 3.5, we will extend the equation of single phase flow to one of two phase 

flow. 
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3.2 EDFM Model 

 

Lee et al. (2001), Li and Lee (2008), Hajibeygi et al. (2011) and Moinfar et al. 

(2012) developed and improved the embedded discrete fracture model. EDFM applies the 

concept of wellbore index (WI) to derive a transport index between fracture and matrix 

cells. Moinfar et al. (2013) show that EDFM provides adequate accuracy for multiphase 

compositional simulation. 

Because the fractures and the matrix are modeled on different computational 

domains, there is no fluid communication between them in the mass balance equations. 

Consequently, we define non-neighboring connections (NNC) for EDFM. That is, each 

gridblock in the numerical model can communicate with any other gridblock through a 

non-neighboring connection. 

The embedded fracture3s are discretized vertically and horizontally by the cell 

boundaries of gridblocks that are intersected by a fracture. Connection transmissibility is 

then introduced to account for the flux interaction between the fracture and the matrix. Li 

and Lee 2008 assume that the pressure around fracture is linearly distributed, and with this 

approximation the average normal distance from the fracture in the gridblock is 

〈𝑑〉 =
∫𝒏 ⋅ 𝑥𝑑𝑆

𝑆
                                                      (3.16) 

where 𝒏 is the unit normal vector; 𝑥 is the distance from the fracture; 𝑑𝑆 and 𝑆 are the areal 

element and area of the gridblock, respectively. Subsequently, the transmissibility is 

𝑇 =
𝑘𝐴

〈𝑑〉
                                                           (3.17) 

where 𝐴 is the fracture surface area in the gridblock and 𝑘 is the harmonic average of the 

permeability of the hydraulic fracture and the matrix. For fractures that do not fully 
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penetrate a gridblock, it is assumed that 𝑇 is linearly proportional to the fracture length 

inside the gridblock; therefore, the transfer term between a matrix cell and a segment of a 

fracture embedded in that cell is 

𝑞𝑚𝑓 = 𝑇(𝜓𝑚 − 𝜓𝑓)                                              (3.18) 

where 𝑞𝑚𝑓 is the volumetric rate between the matrix gridblock and the fracture segment, 

𝑇  is the transmissibility between them, 𝜓𝑚  and 𝜓𝑓  are matrix and fracture gridblock 

potential, respectively.  

For a NNC between intersecting fracture cells, we use the same approach presented 

by Karimi-Fard et al. (2004), wherein the transmissibility is 

T𝑓𝑓 =
𝑇1𝑇2

𝑇1 + 𝑇2
                                                      (3.19) 

𝑇1 =
𝑘𝑓1𝜔𝑓1𝐿𝑖𝑛𝑡

𝑑𝑓1
         𝑇2 =

𝑘𝑓2𝜔𝑓2𝐿𝑖𝑛𝑡

𝑑𝑓2
                            (3.20) 

where 𝐿𝑖𝑛𝑡  is the length of the intersection line bounded in a gridblock, 𝜔𝑓 is fracture 

aperture and 𝑘𝑓 is fracture permeability. Likewise, 𝑑𝑓 is the average of normal distances 

from the center of the fracture subsegments (located in each side of the intersection line) 

to the intersection line. 

Such a NNC is required for any pair of intersecting fractures. Thus, if more than 

two fractures intersect in a gridblock, a NNC is defined between each pair of intersecting 

fracture control volumes. Also, if two fractures penetrating a gridblock do not intersect 

with each other within the gridblock, no NNC is needed. 

For a NNC between two cells of an individual fracture, 𝑘 is equal to the fracture 

permeability and 𝑑 is the distance between the centers of two fracture segments. Parameter 

𝐴 is the fracture aperture times the length of this intersection line. 
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Before fluid-flow simulation, a list of NNC pairs, the arrangement of fracture cells, 

the arrangement of fracture cells, the transmissibility of NNCs, and the transmissibility 

between fracture cells should be computed on the basis of the grid structure and fracture 

planes. A preprocessing code is developed to provide the required data for flow 

simulations. 

While EDFM facilitates the modeling of irregular fracture geometry, it is not very 

appropriate for unconventional reservoir modeling for the reason that it assumes a linear 

pressure variation in the normal direction to each fracture. The extreme contrast in 

conductivity between fractures and the ultra-tight matrix results in steep potential gradients 

that are difficult to capture. 

 

3.3 Dual Continuum Model 

 

Dual-continuum models, widely used in the industry, are the conventional method 

for simulating NFRs. Warren and Root (1963) introduced the dual porosity model to the 

petroleum literature. The dual porosity model, which is also known as a sugar cube model, 

was first used for modeling single-phase flow in NFRs. In this model, rectilinear prisms of 

rock matrix are separated by an orthorhombic continuum of fractures. Dual porosity 

simulation involves discretization of the reservoir into two domains, matrix and fracture. 

Hence, every point in the reservoir contains fracture and matrix pressures and saturations. 

A dual porosity model presumes that the flow occurs from the matrix to the fractures, and 

then to the production wells. The rock matrix is where the majority of oil is stored. In the 

dual porosity model, matrix and fracture domains are linked to each other through an 

exchange term that connects each fracture cell to its corresponding matrix cell in a 
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gridblock. The matrix-fracture exchange rate is controlled by a shape factor.  Also, the 

matrix blocks in the dual porosity approach are assumed to be isotropic and homogeneous. 

Fig. 3.1 shows an idealized sugar cube representation of a fractured reservoir, wherein 

highly interconnected orthogonal fractures are fed by numerous matrix blocks. 

 

Figure 3.1: An idealized sugar cube representation of a fractured reservoir (Warren and 

Root 1963). 

Considering single-phase fluid flow, the mass conservation equations for the 

fracture and matrix domains in the dual porosity approach can be expressed for the fracture 

domain, as 

𝑘𝑓𝑥

𝜇

𝜕2𝑃𝑓

𝜕𝑥2
+

𝑘𝑓𝑦

𝜇

𝜕2𝑃𝑓

𝜕𝑦2
+

𝑘𝑓𝑧

𝜇

𝜕2𝑃𝑓

𝜕𝑧2
− 𝑞𝑚𝑓 = 𝜙𝑓𝐶𝑓

𝜕𝑃𝑓

𝜕𝑡
                        (3.21) 

and for the matrix domain, as 

𝜙𝑚𝐶𝑚

𝜕𝑃𝑚

𝜕𝑡
= 𝑞𝑚𝑓                                                     (3.22) 

The matrix-fracture transfer is represented by the pseudo-steady state relation 

𝑞𝑚𝑓 =
𝜎𝑘𝑚

𝜇
(𝑃𝑚 − 𝑃𝑓)                                                (3.23) 

where 𝑘 is permeability, 𝑃 is pressure, 𝜇 is fluid viscosity, 𝐶 is total compressibility, 𝜙 is 

porosity, 𝜎 is shape factor, and 𝑞𝑚𝑓 is matrix-fracture flow rate per unit bulk volume. The 

subscripts m and f refer to the properties in the matrix and fracture domains. The shape 
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factor, which has the dimension of reciprocal area, reflects the geometry of matrix blocks 

and controls the interporosity flow between matrix and fracture domains. 

 

 

3.3.1 Shape Factor 

 

The matrix-fracture exchange is a critical component of any model used for the 

simulation of NFRs. In the Warren and Root approach, the matrix-fracture fluid transfer is 

assumed to take place under pseudo-steady state conditions. The matrix-fracture transfer 

function is proportional to a geometrical shape factor 𝜎 , and the driving force is the 

pressure difference between a matrix block and its surrounding fracture. Determination of 

shape factor is not a simple task because of the potential for complex interaction between 

fractures and matrix rock of various shapes. 

Originally, Warren and Root (1963) defined the shape factor as a parameter that 

depends on the geometry of matrix blocks, as 

𝜎 =
4𝑛(𝑛 + 2)

𝐿2
,                                                        (3.24) 

where 𝑛 is the number of normal sets of fractures (𝑛 = 1, 2, 3) and the characteristic length 

of matrix blocks 

𝐿 = 𝑎,                                    𝑛 = 1 

𝐿 =
2𝑎𝑏

𝑎 + 𝑏
,                           𝑛 = 2 

𝐿 =
3𝑎𝑏𝑐

𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐
,             𝑛 = 3                                          (3.25) 

where 𝑎, 𝑏, and 𝑐 are the lengths of the blocks faces. 

Kazemi et al. (1976) used a finite-difference formulation for the flow between 

matrix and fractures and showed that for a three-dimensional case 
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𝜎 = 4(
1

𝐿𝑥
2

+
1

𝐿𝑦
2

+
1

𝐿𝑧
2
)                                                 (3.26) 

where 𝐿𝑥 , 𝐿𝑦 , and 𝐿𝑧  are the distances between fractures in the 𝑥 , 𝑦, and 𝑧 directions, 

respectively. 

These shape factors assume that the pseudo-steady state assumption is valid. Lim 

and Aziz (1995) considered the physics of pressure diffusion from the matrix to the fracture 

and presented a new shape factor as follows 

𝜎 = 𝜋2 (
1

𝐿𝑥
2

+
1

𝐿𝑦
2

+
1

𝐿𝑧
2
)                                             (3.27) 

They performed simulations to investigate the accuracy of various shape factors using fine-

grid simulations. The results showed that their shape factor in Eq. (3.27) matches with the 

results of fine-grid single porosity better, indicating that the pseudo-steady state 

assumption is not a suitable one and the pressure gradients in the matrix should be taken 

into account for the calculation of shape factors. They also showed that the dual porosity 

simulation using the Warren and Root’s shape factor overestimates the recovery, while the 

simulation using the Kazemi’s shape factor underestimates the recovery. 

 

 

3.4 Geomechanics Effect on porosity and permeability 

 

3.4.1 Geomechanics effect on porosity and permeability of dual continuum 

 

We assume natural fractures consists of continuum alike matrix which has the 

concept porosity. Porosity is a function of volume strain and fluid pressure. Thus the same 

type of equation for porosity update can apply to both. Gai et al. (2003) provides the 

relationship between porosity and fluid pressure and volumetric strain under infinitesimal 

deformation. 
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 𝜙∗ = 𝜙0 + 𝛼𝜖𝑣 +
1

𝑀
𝑝                      (3.28) 

Where 𝜙0 is the initial porosity in each continuum, 𝛼 and 𝑀−1are Biot’s coefficient and 

Biot’s poroelastic parameter for matrix or natural fracture continuum. 𝑝 is the pressure of 

matrix. 

In unconventional reservoir, the permeability of matrix is considerable small 

(10−17~10−20 m2). Thus the change of matrix permeability has a little effect on flow 

compared to that of natural and hydraulic fractures. We assume matrix permeability is 

constant. 

The permeability in natural fractures are mainly affected by the aperture. According 

to the cubic law, the permeability of the cracked system (Izadi, 2011) may be expressed as: 

 
𝑘

𝑘0
= (1 +

Δ𝑏

𝑏0
)
3

                             (3.29) 

Where Δ𝑏 is the aperture change in natural fracture which is a function of strain. 𝑏0 is the 

initial aperture of natural fracture. 

That aperture change is a function of strain has been supported by previous research 

(Liu, 2010). We calculate the average fracture aperture change Δ𝑏 in 𝑥 and 𝑦 directions for 

each grid block. In Fig. 3.2, 𝑆 is the spacing of natural fracture. 𝑏 is the natural fracture 

aperture. 
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Figure 3.2.  Schematic diagram of fracture aperture change due to 

strain. Solid line boundary and Dashed line boundary are the 

configuration before and after deformation. 

We can derive the relationship between average aperture and strain changes due to 

the external force. From the definition of volume strain, we write out volumetric strain of 

total and matrix individually. 

 𝜖 =
Δ𝑥

𝑆
+

Δ𝑦

𝑆
                             (3.30) 

 𝜖𝑚 =
Δ𝑥−Δ𝑏

𝑆
+

Δ𝑦−Δ𝑏

𝑆
                      (3.31) 

Where Δ𝑥 and Δ𝑦 are the length changes in 𝑥 and 𝑦 directions. 

Plug Eq. (3.30) and (3.31) into 휀 = 휀𝑚 + 휀𝑓, we get : 

 Δ𝑏 =
𝑆𝜖𝑓

2
                                  (3.32) 

For the scenario that each dual porosity grid block is cut by hydraulic fracture, there 

is a discontinuity of strain across the hydraulic fracture. We calculate strains for two 

regions that is separated by hydraulic fracture in each grid block and take the average value 

𝜖𝑓 from each part. 
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3.4.2 Geomechanics Effect on hydraulic fracture permeability 

 

We treat hydraulic fracture as void space, that is, porosity is unity and consider 

permeability is the function of the fracture aperture. According to the Poiseuille law, the 

fracture permeability is proportional to the fracture aperture square (Moinfar et al., 2013): 

 𝑘𝑓 = 𝑘𝑓
0 (

𝜔𝑓

𝜔𝑓
0)

2

                            (3.33) 

 

 

3.5 Discretization 

 

In the flow simulation, we use fully implicit, first order backward Euler scheme in 

time and finite volume method to discretize flow equations. In the following equations, 

subscript 𝛼 =  gas or water. Subscripts 𝑚, 𝑓, 𝐹  represent matrix, natural fracture and 

hydraulic fracture individually. Superscript 𝑛 means the time step. 

For matrix 𝑖, we only consider the fluid flow is between matrix continuum and 

surrounding natural fracture continuum. The discretized form is the following: 

(𝑉𝑖𝑆𝛼,𝑖𝜌𝛼,𝑖𝜙𝑚,𝑖
∗ )

𝑛+1
− (𝑉𝑖𝑆𝛼,𝑖𝜌𝛼,𝑖𝜙𝑚,𝑖

∗ )
𝑛

  

 −Δ𝑡 (𝑇 𝛼,𝑚𝑓,𝑖𝑖
𝑘𝑟𝛼

𝜇𝛼
𝜌 𝛼ΔΦ𝛼,𝑚𝑓,𝑖𝑖)

𝑛+1

= 0  (3.34) 

Where 𝑉𝑖 is the volume of the grid block 𝑖, 𝜙𝑚,𝑖
∗  is the fluid fraction of matrix 𝑖, 𝑇 𝛼,𝑚𝑓,𝑖𝑖 is 

the transmissibility between matrix 𝑖 and natural fractures 𝑖. Δ𝑡 is the time step, ΔΦ𝛼,𝑚𝑓,𝑖 

is the potential difference between matrix 𝑖 and the natural fracture 𝑖. 

For natural fracture continuum 𝑖, besides the flow between matrix and itself, it also 

has flow connection with hydraulic fractures that cut natural fractures. 

(𝑉𝑖𝑆𝛼,𝑖𝜌𝛼,𝑖𝜙𝑓,𝑖
∗ )

𝑛+1
− (𝑉𝑖𝑆𝛼,𝑖𝜌𝛼,𝑖𝜙𝑓,𝑖

∗ )
𝑛
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+Δ𝑡 (𝑇 𝛼,𝑚𝑓,𝑖𝑖

𝑘𝑟𝛼

𝜇𝛼
𝜌 𝛼ΔΦ𝛼,𝑚𝑓,𝑖𝑖)

𝑛+1

− ∑ Δ𝑡 (𝑇𝛼,𝑓𝑓,𝑖𝑗

𝑘𝑟𝛼

𝜇𝛼
𝜌 𝛼ΔΦ𝛼,𝑓𝑓,𝑖𝑗)

𝑛+1
𝑛𝑓𝑎𝑐𝑒𝑠

𝑗=1

− 

 ∑ Δ𝑡 (𝑇𝛼,𝑓𝐹,𝑖𝑗
𝑘𝑟𝛼

𝜇𝛼
𝜌 𝛼ΔΦ𝛼,𝑓𝐹,𝑖𝑗)

𝑛+1𝑛𝑓𝐹

𝑗=1
= 0  (3.35) 

Where 𝜙𝑓,𝑖
∗  is the fluid fraction of natural fracture continuum 𝑖, 𝑛𝑓𝑎𝑐𝑒𝑠 is the number of 

natural fractures 𝑗 neighboring to the natural fracture continuum 𝑖, 𝑛𝑓𝐹 is the number of 

connections between natural fracture 𝑖  and hydraulic fracture 𝑗  𝑇𝛼,𝑓𝑓,𝑖𝑗  is the 

transmissibility between natural fractures 𝑖 and 𝑗, 𝑇𝛼,𝑓𝐹,𝑖𝑗  is the transmissibility between 

the natural fracture 𝑖 and the hydraulic fractures 𝑗. ΔΦ𝛼,𝑓𝑓,𝑖𝑗 is potential differences of the 

natural fracture 𝑖 and natural fracture 𝑗. ΔΦ𝛼,𝑓𝐹,𝑖𝑗 is the potential differences of the natural 

fracture 𝑖 and hydraulic fracture 𝑗. 

For each hydraulic segment 𝑖, we assume fluid flow happens between itself and its 

neighboring hydraulic segment and between itself and natural fractures. 

(𝑉𝑖𝑆𝛼,𝑖𝜌𝛼,𝑖𝜙𝐹,𝑖)
𝑛+1

− (𝑉𝑖𝑆𝛼,𝑖𝜌𝛼,𝑖𝜙𝐹,𝑖)
𝑛

+ ∑Δ𝑡 (𝑇𝛼,𝐹𝐹,𝑖𝑗

𝑘𝑟𝛼

𝜇𝛼
𝜌 𝛼ΔΦ𝛼,𝐹𝐹,𝑖𝑗)

𝑛+1
𝑛𝐹𝐹

𝑗=1

+ 

 Δ𝑡 (𝑇𝛼,𝑓𝐹,𝑖𝑗
𝑘𝑟𝛼

𝜇𝛼
𝜌 𝛼ΔΦ𝛼,𝑓𝐹,𝑖𝑗)

𝑛+1

= 0  (3.36) 

Where 𝜙𝐹,𝑖 is the porosity of the hydraulic fracture which is constant in this thesis, 𝑇𝛼,𝐹𝐹,𝑖𝑗 

is the transmissibility between each hydraulic segment 𝑖 and 𝑗. ΔΦ𝛼,𝐹𝐹,𝑖𝑗 is the potential 

difference between each hydraulic segment 𝑖 and 𝑗. 
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3.6 Solution Algorithm 

 

Methods of coupling between reservoir flow and solid deformation found in the 

literature can be classified into four different types, fully coupling, iterative coupling and 

explicit coupling (Tran and Settari, 2004). Now, we review these three coupling methods  

1. Iterative coupled: This approach solves flow and geomechanics variables 

iteratively within a time step until a desired accuracy is reached. For coupled geomechanics 

and flow, there are two schemes: drained split and undrained split. In drained split scheme, 

pore pressure is frozen during mechanical solve. In undrained split scheme, when 

mechanics deformation is being calculated, fluid mass content is fixed, which means fluid 

is not allowed to flow out of or into the system. Iterative coupled method features flexibility 

and modularity because different linear solvers could be designed according to the pattern 

of the matrix in each problem. However, sometimes iterative coupled method could cause 

numerical instability when rock tends to increase in volume with a reduction in pore 

pressure (e.g., owing to dilation during shearing) (Gutierrez et al., 2001).  

2. Fully coupled: This approach solves flow variables such as pressure, saturation, 

temperature and geomechanics response such as displacement at once in a Newton’s 

method. Fully coupled system has unconditional stability. Compared to iterative coupled 

method, it solves a bigger Jacobian matrix at every Newton iteration. 

3. Explicit coupling: it is sometimes also called one-way coupling. In this 

coupling, information is only transferred from a flow simulator to geomechanics simulator, 

which means changes in fluid pressure affect changes in stress and strain field, stress and 

strain field changes do not affect fluid pressure yet (Tran and Settari, 2004). 
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In this study, we use a mixed-space discretization. Finite volume method is applied 

to fluid flow in which pressure is at the center of the grid block. XFEM is used for 

poromechanics where displacement vector is located at the vertices.  

The final linear system that is solved for coupled geomechanics and flow is written 

as a compact 3 × 3 matrix: 

 (

𝐴𝑝𝑝 𝐶𝑝𝑠 𝐶𝑝𝑢

𝐶𝑠𝑝 𝐴𝑠𝑠 𝐶𝑠𝑢

𝐶𝑢𝑝 𝐶𝑢𝑠 𝐾𝑢𝑢

)(
𝑝
𝑠
𝑢
) = (

𝐹𝑝

𝐹𝑠

𝐹𝑢

)  (3.37) 

Where 𝑝, 𝑠, 𝑢 are the pressure, saturation and displacement vectors. In the 3 by 3 

matrix, each term is the coupling coefficient sub matrix between different items (𝑝, 𝑠, 𝑢). 

We solve for the coupled system using fully coupled method. 
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CHAPTER 4 

 

Numerical Cases 

 

 

 

4.1 Mandel’s Problem 

 

Abousleiman et al. (1996) presented the canonical example of nonmonotonic 

behavior in pore pressure following undrained loading. In Fig. 4.1, A rectangular plate, 

length 2𝑎, width 2𝑏, is sandwiched between two rigid, impermeable plates. A compressive 

force 𝐹  is applied at time zero and then held constant. 𝐹  is force per unit length in 𝑧 

direction. Fluid pressure is constant at left and right boundary. Because of the symmetric 

of the domain, only one quarter of the plate is analyzed.  

 

Figure 4.1 Illustration of Mandel’s problem 
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The analytical solution for pore pressure is given as the following (Abousleiman et 

al., 1996) 

 𝑝 =
2𝐹𝐵(1+𝜈𝑢)

3𝑎
∑

sin𝛽𝑖

𝛽𝑖−sin𝛽𝑖 cos𝛽𝑖
(cos

𝛽𝑖𝑥

𝑎
− cos 𝛽𝑖) exp (−

𝛽𝑖
2𝑐𝑡

𝑎2 )∞
𝑖=1   (4.1) 

And  𝛽𝑖 satisfies  

 tan𝛽𝑖 =
(1−𝑣)

𝑣𝑢−𝑣
𝛽𝑖  (4.2) 

The Skempton pore pressure coefficient 𝐵, undrained Poisson’s ratio 𝑣𝑢 and diffusivity 

coefficient 𝑐.(Rice, 1976) 

 𝐵 = 1 −
𝜙𝐾(𝐾𝑠−𝐾𝑓)

𝐾𝑓(𝐾𝑠−𝐾)+𝜙𝐾(𝐾𝑠−𝐾𝑓)
  (4.3) 

 𝑣𝑢 =
3𝑣+𝐵(1−2𝑣)(1−

𝐾

𝐾𝑠
)

3−𝐵(1−2𝑣)(1−
𝐾

𝐾𝑠
)

  (4.4) 

 𝑐 =
2𝑘𝐵2𝐺(1−𝑣)(1+𝑣𝑢)2

9𝜇𝑓(1−𝑣𝑢)(𝑣𝑢−𝑣)
  (4.5) 

Where 𝐾,𝐾𝑠, 𝐾𝑓 are the bulk modulus of the porous media, solid grains and fluid, 𝑣 is the 

drained Poisson’s ratio. 

Table 4.1 gives the dimension of the specimen and its material properties used in 

the simulation. Fig. 4.2 shows the pressure distribution along the x axis with time. The 

pressure in the plate interior first builds up at early time before the entire domain starts to 

deplete. The numerical solution gives results in agreement with the analytical solution. 
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Table 4.1. Input Parameter for Mandel’s Problem 

Input Data Value Unit 

Grid Size 50 × 50 × 1  

Plate Size 200 × 2 × 1 m × m 

Porosity 0.2  

Permeability 10−13 m2 

Young’s modulus 108 Pa 

Drained Poisson’s 

ratio 
0.2  

Undrained Poisson’s 

ratio 
0.4  

Biot’s coefficient 1.0  

Overburden 𝐹 106 Pa 

 

 

Figure 4.2. Mandel’s problem validation 
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4.2 Single Fracture Mechanics 

 

Stress intensity factor (SIF) is an important parameter for linear elastic fracture 

mechanics and for assessment of performance of X-FEM (Khoei, 2014). The normalized 

stress intensity factor is defined as  𝐾𝐼
̅̅ ̅ =

𝐾𝐼

𝜎√𝜋𝑎
.  

First, we have verified our X-FEM by analysis of an infinite plate with a center 

crack in the domain in Fig. B-1. The exact elasticity solution is used as an input imposed 

displacement field on the boundaries of a finite plate. Only the right half of the plate is 

modelled due to symmetry. Four different finite element meshes including 5 × 10, 10 ×

20, 20 × 40 and 40 × 80. The input parameters are 𝜎∞ = 106Pa, 𝐸 = 108Pa, Half Area 

= 10 × 20 m2 , crack half-length 𝑎 = 5.35 m and plane stress condition. 

 

Figure 4.3. Schematic of a center crack in a 

infinite plane 

The analytical solution for crack opening displacement under plane stress 

condition is given by (Janssen et al., 2006): 

 𝑤 =
2𝜎∞

𝐸
√𝑎2 − 𝑥2   (4.6) 



 48 

We compare our numerical results of crack opening displacement (mesh 40 × 80) 

with the analytical one and it shows a remarkable agreement with the exact solution. 

 

 

Figure 4.4 Crack opening displacement versus X coordinates on fracture. 

Numerical calculation of 𝐽 integral is to do the following integral (Moës et al., 

1999): 

 𝐼(1,2) = ∫ [𝜎𝑖𝑗
(1) 𝜕𝑢𝑖

(2)

𝜕𝑥1
+ 𝜎𝑖𝑗

(2) 𝜕𝑢𝑖
1

𝜕𝑥1
− 𝜎𝑖𝑗

(1)
휀𝑖𝑗

(2)
𝛿1𝑗  ]

𝜕𝑞

𝜕𝑥𝑗
𝑑𝐴  

𝐴
  (4.7) 

Where 𝐴 is the integral domain which is shown in Fig. 4.5 (dark grids), 𝐴 is the 

grid blocks that are cut by the dashed circle. 𝜎𝑖𝑗
(1)

 𝑢𝑖
(1)

𝑎𝑟𝑒 the numerical solutions of the 

stress and displacement near the tip.  𝜎𝑖𝑗
(2)

, 𝑢𝑖
(2)

are the analytical solutions near the tip which 

are listed in the Chapter 2. 𝛿𝑖𝑗 is the Kronecker delta. 𝑞(𝒙) is the smoothing weighting 

function which takes a value of unity on an open set containing the crack tip and vanishes 

on an outer prescribed dashed circle.  



 49 

 

Figure 4.5 Element selected (dark grids) near the crack tip for the 𝐽 integral 

After we calculate the 𝐽 integral, stress intensity factor 𝐾 can be calculated by the 

following equation: 

 𝐾 =
2

𝐸′
𝐼(1,2)  (4.8) 

Where 𝐸′ is equal to 𝐸 under plane stress condition and equal to 
𝐸

1−𝑣2 under plane strain 

condition. 

The analytical solution for this problem is  𝐾𝐼
̅̅ ̅ = 1 (Huang et al. 2003). In Table B-

1, we do the J-Integral near the crack tip and calculate the numerical result  𝐾𝐼
̅̅ ̅ which 

reaches excellent accuracy.  
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Table 4.2. Normalized values of stress intensity factors 

Number of 

Nodes 
Normalized  𝐾𝐼

̅̅ ̅ Error % 

66 1.01449 1.4 

231 1.00861 0.86 

861 1.0047 0.47 

3321 1.0024 0.24 

 

Next, we rotate fracture 𝛽 degrees from its center counterclockwise. Analytical 

solution for normalized stress intensify factor has been known as  𝐾𝐼
̅̅ ̅ = cos2 𝛽. 

In Fig. 4.6, it shows the comparison of analytical solution with our numerical 

results. A remarkable agreement is reached between numerical and analytical values. 

 

Figure 4.6. Inclined crack stress instensify factor 
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4.3 Convergence Analysis 

 

We use a XFEM-EDFM simulator without considering dual porosity so that grid 

refinement can be completed.  In Fig. 4.7, a central hydraulic fracture in domain is 

investigated. The boundary of the reservoir is impermeable for fluid flow. On the top and 

right side of the reservoir, two constant forces are exerted. On the left and bottom side, the 

displacement are prescribed as zero. Five different number of grid blocks (25 × 25, 50 ×

50, 100 × 100, 200 × 200, 400 × 400 ) are created to do grid refinement for 

displacement. Another five different number of grid blocks ( 5 × 5, 15 × 15, 45 ×

45, 135 × 135, 405 × 405) are created for pressure. The input parameters are listed in 

Table 4.3.  

 

Figure 4.7. A schemeatic of a single hydraulic fracture in the 

unconventional reservoir 
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Table 4.3. Parameters for grid refinement. 

Input Data Value Unit 

Reservoir Size 200 × 200 m × m 

Fracture Width 0.005 m 

𝑥𝑓 51 m 

𝜙 0.2  

𝑘𝑚 10−18 m2 

𝑘𝐹𝑖 10−12 m2 

𝐸𝑚 50 GPa 

𝑣𝑚 0.2  

𝛼𝑚 0.8  

E𝑝 500 MPa 

𝑝𝑖 20 MPa 

𝑆𝑤 0.4  

𝑝𝑤 5 MPa 

Where 𝑥𝑓 is the length of the fracture. 𝑘𝑚 is the matrix permeability. 𝑘𝐹𝑖 is initial 

hydraulic fracture permeability. 𝐸𝑚  is the matrix Young’s modulus. 𝑣𝑚  is the matrix 

Poisson ratio. 𝛼𝑚 is the matrix Biot’s coefficient. 𝐸𝑝 is the proppant Young’s modulus. 𝑝𝑖 

is the reservoir initial pressure. 𝑆𝑤 is water saturation. 𝑝𝑤 is the well pressure. 

The coarsest mesh (400 × 400 for displacement, 405 × 405 for pressure) in each 

test is chosen as a reference. The rest are compared to the reference and calculated L2-

norm. The error is defined as: 
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 휀 =
√∑ (𝑥𝑖−𝑥ref)

2𝑛
𝑖=1

√∑ 𝑥ref
2𝑛

𝑖=1

                          (4.9) 

The grid refinement result for pressure and displacement appear on Fig. 4.8 and 

Fig. 4.9. From the plots, we find that error level of displacement is much smaller than 

pressure. To reach a good precision, Scale of the mesh should be larger than 100 × 100. 

 

Figure 4.8. Error of pressure versus number of grid blocks 

 

Figure 4.9. Error of displacement versus number of nodes 
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4.4 Field Examples 

 

We introduce two cases for testing the EDFM-XFEM with dual porosity coupled 

system. In the following simulation, hydraulic fractures are treated explicitly while natural 

fractures are assumed as orthogonal continuum which surrounds the matrix continuum. 

4.4.1 Effect of Natural Fracture Property on the Coupled System 

We introduce a 2D problem with multiple hydraulic fractures as well as dual 

porosity property for each grid blocks in the domain. The schematic picture is shown in 

Fig. 8. The reservoir has a length scale of 200 m × 200 m. The domain has 100 × 100 

grid blocks. There is one horizontal well that produces gas and water. The well is 

intersected with four hydraulic fractures with different length (from down to 

up,82, 82, 42, 56m). There is no flow on reservoir boundaries. And displacement is fixed 

on the left and bottom sides of the boundary. Constant force is applied on up and right 

sides. 
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Figure 4.10. A schemeatic of a multiple hydraulic 

fracture in the unconventional reservoir 

For flow, the initial reservoir pressure is 20𝑀𝑃𝑎  everywhere, initial water 

saturation 𝑆𝑤 is 0.4. Initial permeability and porosity of the fracture continuum are 𝑘𝑓𝑖 =

10−13 𝑚2  and 𝜙𝑓 = 0.8 . Whereas initial permeability and porosity of the matrix 

continuum are 𝑘𝑚 = 10−18 𝑚2 and 𝜙𝑚 = 0.1. The initial aperture of natural fractures and 

hydraulic fractures are 0.001 𝑚  and 0.005 𝑚  respectively. The well pressure is kept 

constant at 𝑝𝑤 = 5 𝑀𝑃𝑎. 

For mechanics, Young’s modulus for matrix grain is 𝐸m = 5 GPa , drained 

Poisson’s ratio is 𝜈 = 0.2. In this case, we study on the influence of natural fracture normal 

stiffness 𝐾𝑛  on natural aperture and production rates. Three different natural fracture 

normal stiffness 𝐾𝑛  = 40 , 60  and 100  GPa ⋅ m−1  are investigated. Shear stiffness of 

natural fracture is fixed at 𝐾𝑠ℎ = 33 GPa ⋅ m−1. Young’s modulus of proppant is 𝐸𝑝 =
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50 MPa. Biot’s coefficient for matrix and natural fractures are 𝛼𝑚 = 0.8 and 𝛼𝑓 =  0.9. 

Plane strain condition is assumed. 

 

(a)𝐾𝑛 = 40 GPa ⋅ m−1 

 

(b)𝐾𝑛 = 60 GPa ⋅ m−1 
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(c)𝐾𝑛 = 100 GPa ⋅ m−1 

Figure 4.11. Natural fracture aperture changes at t = 200 

days 

We plot the natural fracture aperture change in Fig. 4.11. The natural fracture 

aperture change is determined both on external force and pore pressure. We find that when 

natural fracture normal stiffness 𝐾𝑛 increases, the fracture-matrix system becomes stiffer 

as well. Accordingly, a smaller deformation of natural fracture occurs. It is also shown that 

natural fracture aperture changes at tips are always larger than other places. It is because 

stress 𝜎𝑦𝑦 at tips tend to be singular for linear fracture, which leads to a larger decrease in 

natural fracture aperture. Another interesting phenomenon is that there is an obvious 

contrast of aperture changes between places near well and far away from well at  𝐾𝑛 =

40 GPa ⋅ m−1. While 𝐾𝑛 increases, the contrast is fading away. Smaller normal stiffness 

𝐾𝑛 leads to a larger decrease in natural fracture aperture. As a result, a lower permeability 

field forms and pressure wave transmit slowly in the reservoir. Accordingly, pressure 

difference near well and far away from well is larger at 𝐾𝑛 = 40 GPa ⋅ m−1 than that at 

𝐾𝑛 = 60, 100 GPa ⋅ m−1 . Therefore, an apparent contrast is observed when 𝐾𝑛 =

40 GPa ⋅ m−1.  
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In Fig. 4.12, we plot gas production rates versus time for three different normal 

stiffness. The larger normal stiffness 𝐾𝑛, the smaller aperture changes. Therefore a higher 

permeability field will lead to higher production rates at early days. However, at around 

t = 130  days, production rates of 𝐾𝑛 = 60GPa ⋅ m−1  and 𝐾𝑛 = 100 GPa ⋅ m−1become 

almost the same. 

 

Figure 4.12. Gas production rate versus time 
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4.4.2 Effect of Proppant Property on the Coupled System 

Next, we show an example with varying Young’s modulus of proppant and observe 

its influence on hydraulic fracture aperture and production rates. The hydraulic fracture 

pattern is changed a little bit. It is shown in Fig. 4.13.  

 

Figure 4.13. A schemeatic of a multiple hydraulic 

fracture in the unconventional reservoir 

In this scenario, we fix the normal stiffness at 𝐾𝑛 = 60 𝐺𝑃𝑎 ⋅ 𝑚−1. The Young’s 

modulus of proppant 𝐸𝑝  are 10 𝑀𝑃𝑎 , 50 𝑀𝑃𝑎 , 500 𝑀𝑃𝑎  individually. The remaining 

parameter values are the same as the last case. The starting and ending points of fracture 

are listed in the Table 4.4. 
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Table 4.4. Hydraulic Fracture Position Information 

Fracture 

No 

Starting point Ending point 

1 (61, 33) (141, 47) 

2 (51, 77) (133, 85) 

3 (81, 129) (121, 133) 

4 (73, 163) (127, 163) 

Each hydraulic fracture is intersected with several grid blocks and each intersected 

segment is called fracture segment. In Fig. 4.14, we observe that when proppant becomes 

stiffer, the hydraulic fracture closes less. The fracture aperture almost does not change 

along the fracture plane when 𝐸𝑝 = 5𝐸8 Pa. When 𝐸𝑝 = 5𝐸7 and 1𝐸7 Pa, aperture at tip 

is always larger than at center. It is because along the fracture plane, region around tip is 

always stiffer than that at center. The stiffer region is more able to stand compaction force 

from boundary and reduction in pore pressure.  
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 4.14. Hydraulic fracture aperture after 

production for 1000 days. Fracture number is 

ordered from down to up. Fracture segment 

number is ordered from left to right and down to 

up. The black dashed line represents the well that 

intersects the hydraulic fracture. 

 

 

Figure 4.15. Gas production rate versus time 

In Fig. 4.15, we compare the production rates for the first 200 days. As expectation, 

the stiffest proppant gives the highest production rates. However, the production rate 
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differences between 𝐸𝑝 = 5𝐸8 Pa and 5𝐸7 Pa are not significantly huge. After 200 days, 

the production rates tend to be the same for three cases. 
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CHAPTER 5 

 

CONCLUSIONS  

 

 

In this work, we develop a fully coupled flow and geomechanics simulator using 

the combined XFEM-EDFM and dual porosity model approach with fully-implicit time-

stepping strategy. A proppant model is proposed to simulate hydraulic fracture production 

process. The model is validated by available analytical solutions and mesh refinement is 

performed.  

In the case study section, we first investigate the influence of natural fracture norm 

stiffness on the natural fracture aperture. It shows that a lower normal stiffness causes 

larger deformation of natural fracture continuum and consequently slow the pressure 

propagation in the reservoir.  

Secondly, we study on the proppant’s impact on hydraulic aperture and gas 

production rates. Results show that stiffer proppant could increase gas production rates. 

However, only increase in stiffness of proppant may not improve production rates 

significantly. A less stiff proppant may help achieve a same-level gas production rates.  

In future, we recommend to do the following jobs to improve the simulator: 

1. Use iterative solvers to solve the linear equation system. 

2. Consider fracture contact phenomena in the simulator. 

3. Consider hydraulic fracture propagation in the reservoir. 

4. Extend the current framework to 3 dimension. 
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