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ABSTRACT 
 
 
 

Jiamin Jiang (Master of Science in Petroleum Engineering), 
 
Hybrid Multicontinuum and Discrete Fracture-Matrix Discretization Schemes for 
Unconventional Reservoir Simulation 
 
Directed by Rami Younis 
 
96, pp., Chapter 4: Conclusions 
 

(408 words) 
 

Unconventional reservoirs are the focus of considerable attention as a primary 

energy source. Numerical simulation is a core kernel of reservoir engineering workflows 

for reservoir evaluation, optimization, and management. Accurate and efficient numerical 

simulation of unconventional reservoirs is challenging. There is substantial physical 

complexity involving a number of tightly coupled mechanisms in the modeling of these 

reservoirs. The complexity is further amplified by the multicontinuum nature of the 

stimulated formation, and the complex fracture networks with a wide range of fracture 

length scales and topologies. 

In this work, we develop a generic simulation platform which allows investigators 

to rapidly implement and experiment with a wide array of alternate physical and 

constitutive models. In order to adequately capture the effects of the multi-scaled fracture 

system, we develop two alternate hybrid approaches that are aimed at combining the 

advantages of multicontinuum and discrete fracture-matrix (DFM) representations. 

During the development of unconventional resources, geological and geophysical 
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information may be available in some cases to suggest a prior characterization, but in 

many other cases, this prior model may be incomplete and limited to hydraulic fractures. 

The two hybrid approaches could be utilized for different applications depending on the 

available characterization data and the different requirements for efficiency and accuracy 

considerations. 

The first hybrid model couples EDFM with MINC (EDFM-MINC) in order to 

simulate the fracture network characterized by stimulated reservoir volume (SRV) 

concept. This optimized model could reduce the computational cost that is associated 

with the widely applied logarithmically spaced, locally refined (LS-LR) DFM technique, 

while improving the flexibility to model the complex geometry of hydraulic fractures. 

The MINC concept allows the hybrid model to handle the extreme contrast in 

conductivity between the small-scale fracture network and the ultra-tight matrix that 

results in steep potential gradients. 

For the second class of hybrid model (UDFM-MINC), the primary fractures are 

described using DFM with unstructured gridding, and the small-scale fractures are 

simulated by continuum-type approaches in a fully coupled manner. Optimized local grid 

refinement (LGR) is employed to accurately handle the transient flow regime around 

primary fractures. An upscaling technique that applies EDFM on the detailed realization 

of the DFN using the target unstructured grid in order to generate an appropriate dual-

permeability (DK) model is also developed. The upscaling technique is suitable for cases 

where a detailed prior model for the complete fracture network is available. 

Simulation studies demonstrate the applicability of the developed simulation 

platform. Model verification is conducted against several reference solutions. 
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INTRODUCTION 
 
 
 

Advances in formation stimulation technology are promoting global interest in the 

recovery of hydrocarbons from tight and shale reservoirs. In terms of unconventional 

reservoir management and given the underlying complexity of these systems, modeling 

will continue to play a critical role towards the evaluation, design, and management of 

stimulation and production processes (Moridis et al. 2013). 

There is considerable nonlinear complexity in the modeling of unconventional 

reservoirs (for example, shale gas reservoirs). The gas flow is governed by a number of 

tightly coupled mechanisms including sorption, transport in ultra-tight porous media 

across various flow regimes (e.g., Knudsen, transition, slippage, and viscous effects), 

high-velocity turbulent flow, and rock unconsolidation within fractures (Wu et al. 2011). 

This complexity is further amplified by the multicontinuum nature of the stimulated 

formation, and the multiscale fracture networks that involve complicated geometries. 

Stimulated unconventional reservoirs comprise complex fracture networks with a 

wide range of fracture length scales and topologies. A schematic of the types of fracture 

with various levels of complexity is shown in Fig. 1 (Warpinski et al. 2008). 

Microseismic measurements and other geophysical evidence suggest that the creation of 

complex fracture networks during fracturing treatments may be a common occurrence 

(Weng et al. 2014). Moreover, preexisting natural fracture networks are prevalent. The 

stress alteration induced by hydraulic fracturing treatments may activate the preexisting 

natural fractures and open microscopic flow channels within the well drainage area 
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(Freeman et al. 2010). Secondary stress-release fractures interacting with primary 

fractures could have decisive influence on the well productivity, and it is very likely that 

their geometry is irregular with multiple orientations (Houze et al. 2010). Moridis et al. 

(2010) provide a classification of fracture systems that are thought to be present in 

stimulated unconventional gas reservoirs, and they propose that the fracture networks 

could contain up to four subdomains with various properties and characteristics, leading 

to substantial challenges in the accurate modeling of such reservoirs. 

 

Figure 1: Schematic diagram of the types of fracture with various levels of complexity 
(Warpinski et al. 2008). 
 

Broadly, two classes of numerical approaches are commonly used to model fluid 

flow in fractured systems, continuous representations in the form of variants of a dual-

porosity/dual-permeability (DP/DK) approach and discrete representations in the forms 

of discrete fracture-matrix method (DFM). 

The DP model proposed by Warren and Root (1963) is appropriate for reservoirs 

with highly connected small-scale fractures. DP models, however, are limited in their 

ability to represent disconnected fractured media or a small number of large-scale 

fractures that may dominate the flow. Moinfar et al. (2011) demonstrate examples where 

the DP model fails to provide satisfactory solutions in the presence of fracture systems 
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with high heterogeneity. Moreover, the application of the traditional DP approach in 

unconventional reservoirs could result in large inaccuracy since it may take several years 

to reach the pseudo-steady state in the ultra-tight matrix systems. A multi-porosity model 

called multiple interacting continua (MINC) (Pruess et al. 1985; Wu et al. 1988) was 

proposed to simulate fully transient fracture-matrix interaction by subdividing the matrix 

block into strings of nested-cells. This sub-gridding strategy is a more suitable continuous 

numerical representation for tight and shale gas systems since it can accommodate the 

large potential gradients that typically arise near fractures in such reservoirs. Owing to 

the nonlinearity that is associated with variable gas compressibility and viscosity, the 

importance of this ability to resolve these gradients is even more pronounced. Farah et al. 

(2014) also showed that the MINC method can accurately capture water invasion near 

fracture faces as well as the water blocking effects due to high capillary forces in 

unconventional gas reservoirs. Despite advances in treatments to capture fast dynamics 

near fractures, continuous representations suffer from the drawback of requiring an 

idealized regular fracture topology that is tied to that of the underlying simulation mesh. 

This is a potentially serious drawback for fracture networks with disjoint, irregular, and 

sparse topologies. 

Compared to continuous representations, DFMs attempt to incorporate explicit 

discretized representations of fractures and fracture segments. Subsequently, they can be 

used to simulate realistic, complex, and non-ideal fracture geometries, and to account for 

the effects of individual fractures on fluid flow explicitly. Moreover, the specification of 

the exchange between matrix and fracture is relatively straightforward since it depends 

directly on the fracture geometry. Several DFM models have been reported in the 
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literature (for example, Kim and Deo 2000; Juanes et al. 2002; Bogdanov et al. 2003; 

Karimi-Fard and Firoozabadi 2003; Karimi-Fard et al. 2004; Monteagudo and 

Firoozabadi 2004; Matthai et al. 2005; Hoteit and Firoozabadi 2005; Reichenberger et al. 

2006; Geiger et al. 2009). In addition, Lee et al. (2001), Li et al. (2008), Hajibeygi et al. 

(2011) and Moinfar et al. (2012) develop and improve an embedded discrete fracture 

model (EDFM) that incorporates the effect of each fracture explicitly without requiring 

the simulation mesh to conform to the fracture geometry. In EDFM, a Cartesian 

simulation grid may be used, and the fracture segments that intersect grid cells are treated 

as discrete fracture computational domains. EDFM introduces the concept of the 

transport index to tie the additional computational control-volumes for fractures to the 

matrix. Owing to the severe contrast in permeability between the matrix and fractures, 

DFMs typically require high levels of mesh refinement in the vicinity of fractures. 

In general, the simulation of small-scale/natural fractures using DFMs is not 

practical due to the associated prohibitive computational cost. As a first response, 

hierarchical approaches have been developed where fractures at different scales are 

modeled differently (Lee et al. 2001). In this direction, hybrid DFM-dual-continuum 

approaches have been proposed where hydraulic and large-scale fractures are modeled by 

DFM, and a dual-continuum approach is employed to capture the dense small-scale 

fractures (Moinfar et al. 2013; Wu et al. 2013). Fig. 2 illustrates the hybrid modeling 

approach to couple small- and large-scale fractures. In the hybrid approach, one critical 

aspect is to establish the link between the fine-scale discrete fracture network (DFN) and 

the corresponding continuum-type model. During the development of unconventional 

reservoirs, integrated fracture characterization data, if available, could provide multiple 
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realizations of DFN. The fracture uniformity that is presumed by the traditional 

continuum-type models may not be present in these realizations. Several upscaling 

methods for constructing continuum-type models from DFN were developed (Dershowitz 

et al. 2000; Ding et al. 2006; Vitel et al. 2007; Ahmed Elfeel and Geiger 2012; Geiger et 

al. 2013; Maier and Geiger 2013). Karimi-Fard et al. (2006), Gong et al. (2008), Hui et al. 

(2013) also developed the multiple sub-region (MSR) method in order to systematically 

generate flow-based MINC model to resolve the matrix dynamics in each coarse block. 

 

Figure 2: Schematic illustrating a hybrid modeling approach for small- and large-scale 
fractures. 
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CHAPTER 1 
 

REVIEW OF MULTICONTINUUM AND DFM BUILDING BLOCKS 
 
 

Presence of highly fracture pathways at various length scales, coupled with small 

fracture volumes, makes numerical simulation of fluid flow in naturally fractured 

reservoirs (NFRs) very challenging. Several approaches have been proposed to model 

NFRs, which can be categorized into two classes of models, dual continuum and discrete 

fracture models. Presently, dual continuum models are the most commonly used 

modeling approach for NFRs in the petroleum industry. However, discrete fracture 

modeling approaches are gaining considerable interest. 

 
 

1.1 Dual-Continuum Models 
 

Dual-continuum models, widely used in the industry, are the conventional method 

for simulating NFRs. Warren and Root (1963) introduced the dual porosity model to the 

petroleum literature. The dual porosity model, which is also known as a sugar cube model, 

was first used for modeling single-phase flow in NFRs. In this model, rectilinear prisms 

of rock matrix are separated by an orthorhombic continuum of fractures. Dual porosity 

simulation involves discretization of the reservoir into two domains, matrix and fracture. 

Hence, every point in the reservoir contains fracture and matrix pressures and saturations. 

A dual porosity model presumes that the flow occurs from the matrix to the fractures, and 

then to the production wells. The rock matrix is where the majority of oil is stored. In the 

dual porosity model, matrix and fracture domains are linked to each other through an 
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exchange term that connects each fracture cell to its corresponding matrix cell in a 

gridblock. The matrix-fracture exchange rate is controlled by a shape factor.  Also, the 

matrix blocks in the dual porosity approach are assumed to be isotropic and 

homogeneous. Fig. 1.1 shows an idealized sugar cube representation of a fractured 

reservoir, wherein highly interconnected orthogonal fractures are fed by numerous matrix 

blocks. 

 

Figure 1.1: An idealized sugar cube representation of a fractured reservoir (Warren and 
Root 1963). 

 

Considering single-phase fluid flow, the mass conservation equations for the 

fracture and matrix domains in the dual porosity approach can be expressed for the 

fracture domain, as 

𝑘𝑓𝑓
𝜇
𝜕2𝑃𝑓
𝜕𝑥2

+
𝑘𝑓𝑓
𝜇
𝜕2𝑃𝑓
𝜕𝑦2

+
𝑘𝑓𝑓
𝜇
𝜕2𝑃𝑓
𝜕𝑧2

− 𝑞𝑚𝑓 = 𝜙𝑓𝐶𝑓
𝜕𝑃𝑓
𝜕𝜕

                        (1.1) 

and for the matrix domain, as 

𝜙𝑚𝐶𝑚
𝜕𝑃𝑚
𝜕𝜕

= 𝑞𝑚𝑓                                                     (1.2) 

The matrix-fracture transfer is represented by the pseudo-steady state relation 

𝑞𝑚𝑓 =
𝜎𝑘𝑚
𝜇

�𝑃𝑚 − 𝑃𝑓�                                                (1.3) 
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where 𝑘 is permeability, 𝑃 is pressure, 𝜇 is fluid viscosity, 𝐶 is total compressibility, 𝜙 is 

porosity, 𝜎 is shape factor, and 𝑞𝑚𝑓 is matrix-fracture flow rate per unit bulk volume. The 

subscripts m and f refer to the properties in the matrix and fracture domains. The shape 

factor, which has the dimension of reciprocal area, reflects the geometry of matrix blocks 

and controls the interporosity flow between matrix and fracture domains. 

 
 
1.1.1 Shape Factor 
 

The matrix-fracture exchange is a critical component of any model used for the 

simulation of NFRs. In the Warren and Root approach, the matrix-fracture fluid transfer 

is assumed to take place under pseudo-steady state conditions. As described in Eq. 1.3, 

the matrix-fracture transfer function is proportional to a geometrical shape factor 𝜎, and 

the driving force is the pressure difference between a matrix block and its surrounding 

fracture. Determination of shape factor is not a simple task because of the potential for 

complex interaction between fractures and matrix rock of various shapes. 

Originally, Warren and Root (1963) defined the shape factor as a parameter that 

depends on the geometry of matrix blocks, as 

𝜎 =
4𝑛(𝑛 + 2)

𝐿2
,                                                        (1.4) 

where 𝑛  is the number of normal sets of fractures (𝑛 = 1, 2, 3) and the characteristic 

length of matrix blocks 

𝐿 = 𝑎,                                    𝑛 = 1 

𝐿 =
2𝑎𝑎
𝑎 + 𝑎

,                           𝑛 = 2 

𝐿 =
3𝑎𝑎𝑎

𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎
,             𝑛 = 3                                          (1.5) 
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where 𝑎, 𝑎, and 𝑎 are the lengths of the blocks faces. 

Kazemi et al. (1976) used a finite-difference formulation for the flow between 

matrix and fractures and showed that for a three-dimensional case 

𝜎 = 4�
1
𝐿𝑓2

+
1
𝐿𝑓2

+
1
𝐿𝑓2
�                                                  (1.6) 

where 𝐿𝑓 , 𝐿𝑓 , and 𝐿𝑓  are the distances between fractures in the 𝑥, 𝑦, and 𝑧 directions, 

respectively. 

These shape factors assume that the pseudo-steady state assumption is valid. Lim 

and Aziz (1995) considered the physics of pressure diffusion from the matrix to the 

fracture and presented a new shape factor as follows 

𝜎 = 𝜋2 �
1
𝐿𝑓2

+
1
𝐿𝑓2

+
1
𝐿𝑓2
�                                              (1.7) 

they performed simulations to investigate the accuracy of various shape factors using 

fine-grid simulations. The results showed that their shape factor in Eq. 1.7 matches with 

the results of fine-grid single porosity better, indicating that the pseudo-steady state 

assumption is not a suitable one and the pressure gradients in the matrix should be taken 

into account for the calculation of shape factors. They also showed that the dual porosity 

simulation using the Warren and Root’s shape factor overestimates the recovery, while 

the simulation using the Kazemi’s shape factor underestimates the recovery. 

 
 
1.1.2 Multicontinuum Modeling with the MINC Concept 
 

Because of the ultra-low matrix permeability in unconventional formations, a long 

period of transient flow occurs inside the matrix (Mayerhofer et al. 2006; Warpinski et al. 

2008; Cipolla et al. 2010); thus it is inaccurate to treat fracture-matrix flow as pseudo-
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steady state. High-resolution is needed near fractures in order to capture the large 

potential gradients. The MINC model treats the transient interaction between matrix and 

fractures in a realistic way (Pruess and Narasimhan 1985; Wu and Pruess 1988). In the 

MINC model, each matrix cell in the computational mesh is subdivided into a series of 

nested sub-cells. On the basis of the assumption that global flow occurs through the 

network of the well-connected micro-fractures, the reservoir could be partitioned into 

primary gridblocks that contain groups of elementary units for nested matrix and fracture 

continua. The three dimensional configuration of the MINC model comprises three 

orthogonal sets of natural fractures, as depicted in Fig. 1.2. While variables like pressure 

may vary strongly over small distances in the vicinity of the fractures, it is reasonable to 

expect that spatial variations within the fracture system may be slow and amenable to 

volume averaging (Pruess and Narasimhan 1985). Thus, appropriate portions of the flow 

region could be lumped into one computational volume element as shown in Fig. 1.2. 

 

Figure 1.2: MINC concept of the multicontinuum model. 
 

In order to describe the methodology of deriving the parameters required by the 

MINC concept, an idealized fractured reservoir, made up of identical rectangular blocks 

which are separated by fractures is considered as in Pruess and Narasimhan (1982). The 

interacting continua can be described through a set of elemental volumes 𝑉𝑖 , interface 

areas 𝐴𝑖−1,𝑖 , and nodal distances 𝑑𝑖−1,𝑖 , which can be written as an expression of the 
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volume fractions 𝑓𝑖 occupied by the 𝑁 interacting continua. The nested volume elements 

can be calculated with several approaches e.g. constant volume fractions, equidistant 

nested volume elements, from upscaling procedures. In a three dimensional setting, 

assuming that the index 𝑖 = 1 refers to the outer fracture continuum, the volume fraction 

for the outer continuum in a coarse block of cubical shape having the edge 𝐿 is 

𝑓1 = [𝐿3 − (𝐿 − 𝛿)3] ∕ 𝐿3 ≈ 3𝛿 ∕ 𝐿                                       (1.8) 

where 𝛿 is the fracture aperture. The volume of continuum 𝑖 in an elementary unit 

𝑉𝑖 = 𝑓𝑖𝐿3,   𝑖 = 1, 2, … ,𝑁                                                (1.9) 

the interface area 

𝐴𝑖,𝑖+1 = 6𝐿2 � � 𝑓𝑗

𝑁

𝑗=𝑖+1

�

2/3

                                        (1.10) 

the nodal distances 

𝑑1,2 =
𝐿
4 ��

�𝑓𝑗

𝑁

𝑗=2

�

1/3

− ��𝑓𝑗

𝑁

𝑗=3

�

1/3

�                               (1.11) 

𝑑𝑖,𝑖+1 =
𝐿
4 ��

�𝑓𝑗

𝑁

𝑗=𝑖

�

1/3

− � � 𝑓𝑗

𝑁

𝑗=𝑖+2

�

1/3

�                           (1.12) 

and the interface for the innermost element 𝑉𝑁 

𝑑𝑁−1,𝑁 =
𝐿
4

(𝑓𝑁−1 + 𝑓𝑁)1/3 −
3𝐷
20

𝑓𝑁
1
3                              (1.13) 

In terms of its efficacy, MINC can be compared to the logarithmically spaced, 

locally refined (LS-LR) DFM technique that is widely applied in commercial simulators 

for modeling the fracture network characterized by the SRV concept. Fig. 1.3 illustrates 

how the MINC model could provide better computational efficiency relative to LS-LR 
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while adequately capturing sharp local transients. Like MINC, LS-LR assumes an 

orthogonal fracture geometry; therefore, such techniques are suitable for the application 

scenario where detailed geological information of natural/small-scale fractures is not 

available. 

       

Figure 1.3: Schematic comparing the LS-LR method with the MINC model. 
 

A preprocessing routine is developed to compute the geometric parameters of the 

MINC model from the specification of fracture spacing 𝐿, aperture 𝛿, and the volume 

fractions 𝑓𝑖 occupied by each interacting continuum. The volume fractions can be chosen 

to provide good resolution where needed, except for the constraint that the summation of 

fractions equals to one. Then the geometry parameters for computing the transmissibility 

of connection can be easily derived. Note that the fracture network permeability must be 

converted to an effective permeability when computing the connections between fractures 

or other continua. The coefficient that should be multiplied is 

𝛽 = [𝐿2 − (𝐿 − 𝛿)2] 𝐿2⁄ ≈ 2𝛿 𝐿⁄                                       (1.14) 

When the number of nested matrix cells is one, the MINC model reduces to the 

dual-porosity model. In this work, we apply the shape factor given by Eq. 1.6. The same 

shape factor is also applied for the innermost nested-cell of the MINC model. The 

rectangular matrix geometry chosen here is not a requirement; the model could also be 

extended to other matrix shapes. 
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It should be noted that there are other interesting alternatives to MINC such as the 

lumped parameter model (Zimmerman et al. 1996), or simulating diffusion in the matrix 

directly using appropriate analytical solutions (Geiger et al. 2013; Tecklenburg et al. 

2013). We choose to apply the MINC model due to its generality. Fluid flow in 

unconventional reservoirs such as gas and liquid rich shale plays usually involves 

substantial nonlinear complexity. The flow is governed by a number of tightly coupled 

mechanisms including sorption, diffusion, multi-component and multi-phase flow 

behavior. The MINC model allows us to incorporate such physics. In addition, the MINC 

model is suitable for the simulation of the effects of fracturing fluid invasion, as well as 

the multicontinuum configuration that exists in organic-rich shale matrix. Fig. 1.4 

illustrates the coupled desorption-diffusion-advection model for an organic-inorganic-

fracture configuration using MINC. This model assumes that organic matters are 

imbedded in an inorganic matrix. 

 

Figure 1.4: Coupled flow of MINC model with organic-inorganic-fracture configuration. 

 
 

1.2 Discrete Fracture Models 
 
1.2.1 EDFM 
 

Lee et al. (2001), Li and Lee (2008), Hajibeygi et al. (2011) and Moinfar et al. 

(2012) developed and improved the embedded discrete fracture model. EDFM applies the 

concept of wellbore index (WI) to derive a transport index between fracture and matrix 
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cells. Moinfar et al. (2013) show that EDFM provides adequate accuracy for multiphase 

compositional simulation. 

Because the fractures and the matrix are modeled on different computational 

domains, there is no fluid communication between them in the mass balance equations. 

Consequently, we define non-neighboring connections (NNC) for EDFM. That is, each 

gridblock in the numerical model can communicate with any other gridblock through a 

non-neighboring connection. 

The embedded fractures are discretized vertically and horizontally by the cell 

boundaries of gridblocks that are intersected by a fracture. Connection transmissibility is 

then introduced to account for the flux interaction between the fracture and the matrix. Li 

and Lee 2008 assume that the pressure around fracture is linearly distributed, and with 

this approximation the average normal distance from the fracture in the gridblock is 

〈𝑑〉 =
∫𝒏 ⋅ 𝑥𝑑𝑥

𝑥
                                                      (1.15) 

where 𝒏 is the unit normal vector; 𝑥 is the distance from the fracture; 𝑑𝑥 and 𝑥 are the 

areal element and area of the gridblock, respectively. Subsequently, the transmissibility is 

𝑇 =
𝑘𝐴
〈𝑑〉

                                                           (1.16) 

where 𝐴 is the fracture surface area in the gridblock and 𝑘 is the harmonic average of the 

permeability of the hydraulic fracture and the matrix. For fractures that do not fully 

penetrate a gridblock, it is assumed that 𝑇 is linearly proportional to the fracture length 

inside the gridblock; therefore, the transfer term between a matrix cell and a segment of a 

fracture embedded in that cell is 

𝑞𝑚𝑓 = 𝑇�𝜓𝑚 − 𝜓𝑓�                                              (1.17) 
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where 𝑞𝑚𝑓 is the volumetric rate between the matrix gridblock and the fracture segment, 

𝑇  is the transmissibility between them, 𝜓𝑚  and 𝜓𝑓  are matrix and fracture gridblock 

potential, respectively.  

For a NNC between intersecting fracture cells, we use the same approach 

presented by Karimi-Fard et al. (2004), wherein the transmissibility is 

T𝑓𝑓 =
𝑇1𝑇2
𝑇1 + 𝑇2

                                                      (1.18) 

𝑇1 =
𝑘𝑓1𝜔𝑓1𝐿𝑖𝑖𝑖

𝑑𝑓1
         𝑇2 =

𝑘𝑓2𝜔𝑓2𝐿𝑖𝑖𝑖
𝑑𝑓2

                            (1.19) 

where 𝐿𝑖𝑖𝑖  is the length of the intersection line bounded in a gridblock, 𝜔𝑓 is fracture 

aperture and 𝑘𝑓 is fracture permeability. Likewise, 𝑑𝑓 is the average of normal distances 

from the center of the fracture subsegments (located in each side of the intersection line) 

to the intersection line. 

Such a NNC is required for any pair of intersecting fractures. Thus, if more than 

two fractures intersect in a gridblock, a NNC is defined between each pair of intersecting 

fracture control volumes. Also, if two fractures penetrating a gridblock do not intersect 

with each other within the gridblock, no NNC is needed. 

For a NNC between two cells of an individual fracture, 𝑘 is equal to the fracture 

permeability and 𝑑  is the distance between the centers of two fracture segments. 

Parameter 𝐴 is the fracture aperture times the length of this intersection line. 

Before fluid-flow simulation, a list of NNC pairs, the arrangement of fracture 

cells, the arrangement of fracture cells, the transmissibility of NNCs, and the 

transmissibility between fracture cells should be computed on the basis of the grid 

structure and fracture planes. A preprocessing code is developed to provide the required 
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data for flow simulations. 

While EDFM facilitates the modeling of irregular fracture geometry, it is not very 

appropriate for unconventional reservoir modeling for the reason that it assumes a linear 

pressure variation in the normal direction to each fracture. The extreme contrast in 

conductivity between fractures and the ultra-tight matrix results in steep potential 

gradients that are difficult to capture. 

 
 
1.2.2 Unstructured DFM 
 

Unstructured gridding provides geometric flexibility to represent irregular and 

non-ideal fracture geometries. In this approach, fractures are represented as lower-

dimensional entities within the geometric grid, and the computational domain is 

expanded accordingly. Lower-dimensional DFM provides a more robust and efficient 

discretization compared with equal-dimensional representations that are more complexity 

and computationally costly due to thin cells (Karimi-Fard et al. 2004; Sandve et al. 2012). 

The mesh generation method used for this study could adaptively mesh a 

fractured porous medium with smoothly changing meshes around fractures. The 

Constrained Delaunay Triangulation (CDT) is used for the whole domain, thus mesh 

edges are prevented from intersecting with fracture constraints. A force-equilibrium 

optimization algorithm is used in conjunction with CDT to provide high quality meshes 

around fracture tips and intersections (Holm et al. 2006). Because of the analogous force-

equilibrium, mesh points will move away from each other and distributed adaptively 

based on the mesh size function. The force-equilibrium algorithm is based on a 

mechanical analogy between triangular mesh and 2-D truss structure, or an equivalent 
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structure of springs (Persson and Strang 2004). Positions of nodes are found by solving 

for static force equilibrium of the truss structure. The force vector at mesh points is an 

array 

𝑭(𝒑) = �𝑭𝒊,𝒙(𝒑) + 𝑭𝒆,𝒙(𝒑)𝑭𝒊,𝒚(𝒑) + 𝑭𝒆,𝒚(𝒑)�                           (1.20) 

where 𝑭𝒊 are the internal forces from edges, 𝑭𝒆 are the external forces from boundary 

reactions, 𝒑 is an N-by-2 coordinate matrix of mesh points, and N is the number of mesh 

points. 

The external forces come from reaction forces acting normal to the boundary. A 

linear function correspond to a linear elastic truss structure is modeled 

𝑓(𝑙, 𝑙0) = � 𝑘
(𝑙0 − 𝑙),   𝑙 < 𝑙0

 0,                 𝑙 ≥ 𝑙0                                           (1.21) 

where 𝑓(𝑙, 𝑙0) is the internal force in each truss bar, 𝑙 and 𝑙0 are the actual and desired 

length of edge, and 𝑘 is a constant unit conversion factor. 

Mesh points 𝒑 is then solved from the equilibrium system 𝑭(𝒑) = 𝟎. A pseudo 

time stepping method could be used 

𝑑𝒑
𝑑𝜕

= 𝑭(𝒑),   𝜕 ≥ 0                                                    (1.22) 

Eq. 1.22 is then discretized explicitly using the forward Euler method 

𝒑(𝜕𝑖+1) = 𝒑(𝜕𝑖) + ∆𝜕 ⋅ 𝑭�𝒑(𝜕𝑖)�                                      (1.23) 

after each time step, new mesh points 𝒑(𝜕𝑖+1) are updated from the pre-step positions 

𝒑(𝜕𝑖), and new triangulation is generated by the CDT algorithm using 𝒑(𝜕𝑖+1). Finally, 

the iteration terminates if norm of 𝑭�𝒑(𝜕𝑖+𝑖)� comes close to zero. 
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We need to calculate the transmissibilities for the matrix-matrix, matrix-fracture, 

and fracture-fracture block pairs. We follow the method developed by Karimi-Fard et al. 

(2004), which we now describe. 

For matrix-matrix transmissibility, suppose that blocks 1 and 2 are part of the 

matrix, with the average pressures in them being 𝑃1 and 𝑃2. According to Darcy’s law, 

the volume flow rate 𝑞12 between the two blocks is given by 𝑞12 = 𝑇12(𝑃2 − 𝑃1). The 

transmissibility 

𝑇12 =
𝛼1𝛼2
𝛼1 + 𝛼2

                                                       (1.24) 

and the flow conductance 

𝛼𝑖 =
𝐴𝑖𝐾𝑖
𝐷𝑖

𝒏𝒊 ∙ 𝒇𝒊                                                    (1.25) 

being a flow conductance. 𝐴𝑖  is the common face between the two triangles, 𝐾𝑖  the 

absolute permeability of triangle 𝑖, 𝐷𝑖  the cell-to-face distance of block 𝑖, 𝒏𝒊 the vector 

normal to the face pointing toward block 𝑖, and 𝒇𝒊 the unit vector parallel to the cell-to-

face connecting the line pointing toward block 𝑖. In effect, the two conductances 𝛼1 and 

𝛼2 are in series, and 𝑇12 is simply the equivalent flow conductance. 

Fracture-fracture transmissibility could be calculated as in Eq. 1.18.  We apply the 

star-delta transformation (Karimi-Fard et al. 2004) for fracture intersections. This 

formulation allows for different face areas and face normal vectors on either side of the 

connection, in addition to handling intersecting fractures without introducing 

intermediate cells. The transmissibility of each connection at the fracture intersection is 

𝑇12 =
𝑇1𝑇2
∑ 𝑇𝑖
𝜂
𝑖=1

                                                        (1.26) 

where 𝜂 is the number of intersecting fracture segments. 



 19 

The procedure for computing the transmissibility between a matrix block and a 

fracture is the same as that for the matrix-matrix blocks and, therefore, need not be 

repeated. In order to simplify the grid generation algorithm, no volume is assigned to the 

fractures. During the fluid flow simulations, however, each fracture has its own volume 

(thickness and length), i.e., taken into account in the mass balance calculations. Doing 

otherwise will generate errors in the volume calculations, which can be considerable if 

there are many fractures in the computational grid. To avoid the error, the volume of each 

fracture is subtracted from that of its adjacent matrix. 
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CHAPTER 2 
 

HYBRID COUPLED DISCRETE FRACTURE-MATRIX AND 
MULTICONTINUUM MODELS 

 
 

Hybrid models that can effectively integrate DFM with continuum-type 

approaches are a promising direction towards the accurate and efficient modeling of 

multi-scaled stimulated unconventional formations. In this work, we develop two types of 

hybrid technique that could be utilized for different applications depending on the 

available characterization data and the different requirements for efficiency and accuracy 

considerations. 

The first hybrid model that we propose couples EDFM with MINC (EDFM-

MINC) in order to simulate the stimulated reservoir volume (SRV) for hydraulically 

fractured tight- and shale plays when detailed fracture characterization data for the small 

scale fractures is not available. This optimized model could reduce the computational 

cost that is associated with the widely applied logarithmically spaced, locally refined 

gridding strategy (Cipolla et al. 2009; Rubin 2010; Hinkley et al. 2013; Wilson and 

Durlofsky 2013), while improving the flexibility to model complex hydraulic fracture 

geometry. The hybrid model could be used for long-term well performance evaluation in 

order to obtain a balance between accuracy and computational efficiency. It is also 

suitable for well interaction analysis and well placement studies that involve numerous 

wells and dozens of hydraulic fracture clusters with complex configurations. In this work, 

the EDFM-MINC approach is validated by comparison to solutions from the refined 

single-porosity reference model. 
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In the second class of hybrid model (UDFM-MINC), the primary fractures are 

described using DFM with unstructured triangular grids, and the small-scale fractures are 

simulated by continuum-type approaches in a fully coupled manner. Optimized local grid 

refinement (LGR) is employed to accurately handle the transient flow regime around 

primary fractures. Moreover, an upscaling technique is developed in order to capture the 

complex natural fracture geometry using a dual-permeability (DK) model. The upscaling 

technique employs EDFM on the detailed realization of the DFN using the target 

unstructured grid in order to generate an appropriate DK model. This hybrid approach 

does not rely on the assumption of an idealized geometry of the fracture network that is 

typically made by traditional dual-continuum approaches; thus it is applicable to cases 

where a detailed prior model for the complete fracture network is available. The potential 

gradient associated with the fracture and matrix continua could also be resolved using the 

refined gridding around primary fractures. 

We first summarize the physical model, governing equations, and base finite-

volume discretization that are used throughout this paper. This chapter is organized as 

follows: first, we review the basic building blocks of the proposed hybrid methods and 

we present the rationale for these choices. Next, we develop the two proposed hybrid 

methods and the associated upscaling procedure. This is followed by the validation 

studies that are aimed at illustrating the strengths and weaknesses of the two hybrid 

models. Finally, we present further simulation examples and sensitivity studies. 
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2.1 Physical Model 
 

We develop a two-phase (gas, water) simulator which incorporates storage and 

transport mechanisms to modeling unconventional gas reservoirs. All the simulation 

studies for demonstrating the applications of our hybrid fracture models are performed 

using this simulator. We describe gas properties with real-gas option (density and 

viscosity), and apply two sets of relative permeability and capillary pressure curves to 

matrix and fracture. The developed hybrid fracture models could also be used for 

simulating other unconventional resources such as coal-bed methane, tight/shale oil 

reservoir, etc. 

The finite-volume formulation which is very flexible for handling interactions 

between various kinds of continua is applied for discretizing the governing equations. 

Time discretization is carried out using a backward, first-order, fully implicit FD scheme. 

The corresponding Jacobian matrix is evaluated by Automatic Differentiation with 

Expression Templates Library (ADETL), which provides a numerical framework 

allowing wide flexibility in the choice of variable sets and generic representations of 

discretized expressions for gridblocks. 

 
 

2.1.1 Apparent Permeability 
 

Unconventional gas formations are believed to be comprised of pores that are at 

the nanoscale, ranging in size from one to hundreds of nanometers. Conventional Darcy’s 

law does not adequately describe the various non-viscous gas flow regimes that may be 

present. Darcy's law is valid under the assumption of continuum flow, and as the length-

scale of the pore throat diameters approaches the mean-free-path of the gas molecules, 
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the continuum assumption does not apply (Javadpour et al. 2007). In this paper, we 

implemented the transport model proposed by Florence et al. (2007) in our numerical 

simulator. The general form of the model includes an apparent permeability correction 

for gas transport in nano-scale porous media 

𝐹𝑎𝑎𝑎 =
𝑘𝑎𝑎𝑎
𝑘𝐷

                                                            (2.1) 

where 𝐹𝑎𝑎𝑎 is the correction factor for apparent permeability. 

Florence et al. (2007) extended the derivation of Karniadakis et al. (2001) to the 

following form that relies only on the Knudsen number 𝐾𝑖, and the Darcy permeability 

𝐹𝑎𝑎𝑎 = (1 + 𝛼𝐾𝐾𝑖) �1 +
4𝐾𝑖

1 + 𝐾𝑖
�                                      (2.2) 

the Knudsen number is 

𝐾𝑖 =
�̅�
𝑟

=
𝜇𝑔

2.81708𝑝𝑔
�
𝜋𝜋𝑇
2𝑀

𝜙
𝑘𝐷

                                      (2.3) 

the term 𝛼𝐾 in Eq. 2.2 is the rarefaction parameter 

𝛼𝐾 =
128

15𝜋2
𝜕𝑎𝑛−1(4𝐾𝑖0.4)                                           (2.4) 

where �̅� is the mean free path of gas molecules; 𝜇𝑔  is the gas viscosity; 𝑝𝑔  is the gas 

phase pressure; 𝜋 is the gas constant; 𝑇 is the temperature; 𝑀 is the molecular weight. 

 
 

2.1.2 Governing Equations 
 

Although what we are most concerned with in unconventional gas reservoir 

simulations is to model gas flow from reservoir to well, water phase flow is often 

occurring simultaneously with gas flow because of the existence of hydraulic fracturing 

fluids or the mobile in-situ connate water (Wu et al. 2013). The dynamics of the water 
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phase also need to be accurately simulated for water invasion and water blocking effect. 

We consider two-phase system in a porous media which fills the domain Ω ⊂ ℝ𝑖,𝑛 =

2, 3. The model assumes gas is stored in natural and primary fractures as free phase, 

while in matrix as both free and adsorbed phase. The governing equations are the 

conservation of molar mass for each phase 𝛼 = 𝑔,𝑤 

𝜕
𝜕𝜕
�𝜙𝜌𝑔𝑥𝑔 + (1 − 𝜙)𝑚𝑔� + 𝛻 ⋅ �𝐹𝑎𝑎𝑎𝜌𝑔𝒖𝑔� = 𝛹𝑔𝑐𝑐𝑖𝑖 + 𝑞𝑔𝑊                 (2.5) 

𝜕
𝜕𝜕

(𝜙𝜌𝑤𝑥𝑤) + 𝛻 ⋅ (𝜌𝑤𝒖𝑤) = 𝛹𝑤𝑐𝑐𝑖𝑖 + 𝑞𝑤𝑊                                 (2.6) 

We consider the gas adsorption 𝑚𝑔  described by Langmuir isotherm in the 

accumulation term, and multiply apparent permeability correction 𝐹𝑎𝑎𝑎 with the flux term 

to consider gas diffusion and slippage. 𝛹𝛼𝑐𝑐𝑖𝑖 denotes the mass communication between 

different domains (matrix, natural-/micro-fracture, primary fracture), and it has the 

similar expression as flux term. Eqs. 2.5/2.6 are applicable for different domains, with 

slight difference that we neglect adsorption and apparent permeability for fracture 

medium. Eqs. 2.5/2.6 need to be completed with constitutive relations, and initial 

conditions as well as boundary conditions of Neumann or Dirichlet type. Darcy’s law is 

used for the phase velocity 

𝒖𝛼 = −
𝑘𝑘𝑟𝛼
𝜇𝛼

(∇𝑝𝛼 − 𝛾𝛼𝑔∇𝐷)                                            (2.7) 

the source/sink term for phase 𝛼 is 

𝑞𝛼𝑊 =
𝑘𝑟𝛼
𝜇𝛼

𝜌𝛼(𝑝𝛼 − 𝑝𝑊)                                                 (2.8) 

the saturation and capillary pressure constraints are 

𝑥𝑔 + 𝑥𝑤 = 1                                                           (2.9) 
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𝑝𝑐(𝑥𝑤) = 𝑝𝑔 − 𝑝𝑤                                                   (2.10) 

where 𝛼 = water, gas; 𝑥𝛼  is the saturation; 𝑘𝑟𝛼  is the phase relative permeability; 𝛾𝛼  is 

the phase mass density; 𝑝𝑊  is the well bottom-hole pressure; 𝜌𝛼  is the phase molar 

density; 𝜇𝛼 is the phase viscosity; 𝑚𝑔 is the molar mass of gas adsorbed in unit formation 

volume; 𝒖𝛼  is the phase velocity; 𝑄𝛼𝑊 is the source/sink term of phase 𝛼; 𝛹𝛼𝑐𝑐𝑖𝑖 is the 

flux term of phase 𝛼 between domains; 𝑝𝑐 is the capillary pressure between water and gas 

phase. 

The gas density is computed as a function of pressure at isothermal conditions 

using the Peng-Robinson Equation Of State (PR-EOS). The model derived by Lee et al. 

(1966) is used for calculating gas viscosity in this work. The expressions of relative 

permeability and capillary pressure are from Ho and Webb (2006). 

 
 

2.1.3 Finite-Volume Discretization 
 

The finite-volume approach provides a general spatial discretization scheme that 

can represent a three-dimensional domain using a set of discrete meshes. The transport 

and storage properties in each mesh are represented by proper averaging over certain 

control volume, while fluxes of mass across surface segments are evaluated through finite 

difference approximations (Pruess et al. 1985). A two-point flux approximation (TFPA) 

is used to compute the flux at an interface shared between two control volumes. It is 

assumed that pressure varies linearly within each of the two control volumes. The total 

face transmissibility that combines two half-transmissibilities in a harmonic average for 

the flux term is 

𝑇𝑗 =
𝑇𝑖𝑇𝑘
𝑇𝑖 + 𝑇𝑘

                                                         (2.11) 
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the two-point half-transmissibility for a general unstructured mesh is obtained by 

imposing flux and potential continuity at the center of the interface (Moog 2013) 

𝑇𝑖 =
𝒅𝑖 ⋅ (𝐊𝑖 ⋅ 𝒏)𝐴𝑗

|𝒅𝑖|2
                                                  (2.12) 

where 𝒏 is the unit normal to the face; 𝐴𝑗  is the interface area; 𝐊𝑖  is the permeability 

tensor for the 𝑖𝑖ℎ control volume (we assume isotropic permeability in this work); 𝒅𝑖 is 

the vector from the centroid of cell 𝑖  to the centroid of the face. The schematic for 

computing 𝑇𝑖 is shown in Fig. 2.1. 

 

Figure 2.1: Schematic for computing the two-point transmissibility. 
 

It should be noted that some accuracy issue inherent in two-point type 

discretization may arise due to the grid non- orthogonality (Aavatsmark 2002; Lie et al. 

2012). The details for the discretized equations obtained by finite-volume scheme won’t 

be shown in this paper. Here we only provide the expression for the well term of multi-

fractured horizontal well. We assume that the reservoir fluid only flow from hydraulic 

fractures into the wellbore, and there’s no pressure drop along the horizontal wellbore. 

𝑄𝛼𝑊 = 𝑊𝑊𝐹
𝑘𝑟𝛼
𝜇𝛼

𝜌𝛼(𝑝𝛼 − 𝑝𝑊)                                           (2.13) 

For a transverse fracture that intersects with horizontal wellbore in a gridblock, 

we could adapt the Peaceman’s well model to compute the well index 𝑊𝑊𝐹 which relates 
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the wellbore pressure to the pressure of the corresponding fracture control volume, as 

(Moinfar et al. 2012) 

𝑊𝑊𝐹 =
2𝜋𝜔𝐹𝑘𝐹
𝑙𝑛(𝑟𝑐/𝑟𝑤)                                                    (2.14) 

𝑟𝑐 = 0.14�𝐿𝐹2 + ℎ𝐹2                                                   (2.15) 

where 𝜔𝐹  is the fracture aperture (equal to the length of the well intercepted by a 

transverse fracture); 𝐿𝐹  is the fracture length bounded in the gridblock, and ℎ𝐹  is the 

fracture height in the same block; 𝑘𝐹  is the fracture permeability; 𝑟𝑤  is the wellbore 

radius. 

 
             

2.2 Proposed Hybrid Models and An Associated Upscaling Process 
 

We develop two alternate hybrid models that are aimed at combining the 

advantages of multicontinuum and DFM representations. The objectives are to: 

1. Represent realistic complex fracture geometry; 

2. Adequately capture sharp local potential gradients due to severe permeability 

contrasts; 

3. Allow for the incorporation of apparent permeability and other transport mechanisms, 

and; 

4. Reduce the computational cost of representing naturally fractured systems. 

 
 
2.2.1 Hybrid Model I: EDFM-MINC 
 

The first hybrid model combines MINC with EDFM. The MINC concept serves 

two purposes. Firstly, it is used to represent a dense and well-connected small-
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scale/natural fracture network that is activated by stimulation job. Secondly, it allows the 

method to handle the extreme contrast in conductivity between small-scale/natural 

fractures and ultra-tight matrix that results in steep potential gradients. EDFM is used to 

represent sparse irregular primary fractures. Note that large potential gradient will not 

exist in the fracture network because the conductivity contrast between primary fracture 

and small-scale/nature fracture is not so distinct. Subsequently, satisfactory results could 

be obtained under the assumption of uniform pressure over the fracture network faces in 

the hybrid model. 

The proposed hybrid model provides flexibility in the communication between 

primary fractures and the small-scale/nature fracture network according to the 

multicontinuum concept (Jiang et al. 2014). We assume that the primary fracture first 

interacts with the fracture medium of the MINC model. Direct mass transfer to the 

primary fracture from the matrix medium is neglected. Fig. 2.2 illustrates a connection 

list dependency of continua in a computational domain for a simple scenario that has a 

single matrix nested cell. The key aspect of the hybrid model is the calculation of the 

connection transmissibility for flux interaction between different domains. The mass 

transfer of phase 𝛼  between the fracture network in the MINC model and primary 

fracture is expressed as (𝑓: fracture network; 𝐹: primary fracture) 

𝑄𝛼
𝑓𝐹 = 𝑇𝑓𝐹𝛽

𝑘𝑟𝛼
𝜇𝛼

𝜌𝛼�𝑝𝑓𝛼 − 𝑝𝐹𝛼�                                        (2.16) 

Eq. 1.16 is used for computing the transmissibility 𝑇𝑓𝐹, and is modified so that 𝑘 is the 

harmonic average for the permeability of 𝑓 and 𝐹. The conversion coefficient 𝛽 in Eq. 

1.14 should also be multiplied for the fracture network. 
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Figure 2.2: Example of the connection list for EDFM coupled with MINC. 

 
2.2.2 Hybrid Model II: UDFM-MINC 
 

Current hybrid models appearing in the literature are not applicable to 

unconventional scenarios. The hybrid model developed by Wu et al. (2013) lacks the 

flexibility to handle complex fracture geometries due to the use of structured gridding. 

Another hybrid model (Moinfar et al. 2013) applies EDFM to describe primary fractures 

but cannot capture the extreme potential gradient in the ultra-tight matrix around primary 

fractures because suitable LGR technique is not available. 

A coupled method is developed to integrate unstructured DFM with continuum-

type models (dual-porosity, dual-permeability, as well as MINC). Predefined distance 

functions are employed for optimal LGR feature around the primary fractures. This 

hybrid model could provide high-resolution solutions for transient behavior 

characterization. The schematic of the grid (lower-dimensional) and the computational 

domain for such a hybrid model is shown in Fig. 2.3. 

The effective flow properties for the matrix and fracture network continuum in the 

hybrid model could be obtained by the same procedure for computing the parameters of 

continuum-type models (assume regular fracture network as shown in Fig. 1.2). They 
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could also be generated by the unstructured upscaling method which will be introduced in 

the following discussion. 

 

Figure 2.3: Grid domain and computational domain for the hybrid model. 

 
2.2.3 Unstructured Dual-Permeability (DK) Upscaling Method 
 

Recent advances in micro-seismic mapping technology and hydraulic fracturing 

modeling of fracture propagation provide insights that indicate a surprising level of 

complexity in hydraulically-created fracture networks in unconventional formations. 

These complexities arise from the heterogeneity of mechanical rock properties and the 

interaction of hydraulic fractures with pre-existing natural fractures. Fracture 

characterization data (outcrop, core, image log analysis, and seismic, etc.) could be 

assimilated to stochastically generate multiple realizations of discrete fracture network 

(DFN). Assumption of a well-connected, orthogonal fracture network with idealized 

distribution is often not applicable. A direct fine-scale model where fractures at all length 

scales are resolved is impractical from a computational perspective. Upscaling 

procedures are necessary in order to construct a corresponding multicontinuum model 

from a particular discrete fracture characterization. 

In this work, the upscaling method proposed by Moinfar et al. (2013) is extended 

and implemented within the hybrid fracture model based on unstructured grid without 
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invoking traditional DP simplifications. Optimized LGR is employed near primary 

fractures that are described by an unstructured DFM. Although the upscaling procedure 

could only construct the corresponding DK model, the potential gradient in the fracture- 

and matrix-continuum could be resolved to some extent by the detailed gridding around 

primary fractures. 

Compared with flow-based upscaling methods, our method has the advantages of 

reduced computational cost, and of entirely bypassing the challenges in gridding the fine 

scale model. However, the multiple sub-region (MSR) method (Karimi-Fard et al. 2006; 

Gong et al. 2008) is a promising alternative to the upscaling procedure for our hybrid 

fracture model. MSR entails the construction of flow-based MINC model for each coarse 

block from the detailed DFM, providing higher efficacy to capture the matrix dynamics. 

 

Figure 2.4: Schematic of unstructured gridding and embedded fracture network in the 
hybrid model. 
 

We aim to maintain the advantages of the continuum-type models without losing 

the dominant role of primary fractures as fluid conduit connecting reservoir with 
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wellbore. One critical step for fulfilling hybrid fracture modeling is to set the scale 

criterion for different levels of fractures. The criterion for classification should be able to 

identify the primary fractures that will exhibit significant potential gradient and have a 

large impact on the transient flow regime during production process. Criterions such as 

the connectivity with hydraulic fractures, length and conductivity could be considered. 

Different levels of fractures will be simulated by models with different levels of details 

(discrete or continuum). The fracture network pattern with a multi-scaled nature could be 

established from fracture characterization data and hydraulic fracturing models for 

unconventional stimulated well (Cipolla et al. 2011). Fig. 2.4 shows an example for the 

schematic of unstructured gridding and embedded fracture network (primary fracture: 

blue line; natural fracture: black line) in our hybrid model. 

A preprocessing routine is developed to compute the connection lists and 

transmissibilities between different types of fracture and matrix domain. The subscripts 

𝑚 , 𝑓 , and 𝐹  in the following discussion refer to the cells in the matrix, continuum-

fracture and discrete-fracture domains, respectively. In order to calculate the transport 

parameters of the continuum-fracture domain in our hybrid model, upscaling procedure 

should be introduced. The transmissibility between a matrix cell and the corresponding 

continuum-fracture cell is a weighted sum of transmissibility of each embedded fractures 

with the matrix (Moinfar et al. 2013) 

𝑇𝑚−𝑓 = �𝑤𝑖

𝑁𝑓

𝑖=1

𝑇𝑚−𝑓,𝑖                                                  (2.17) 

where 𝑁𝑓 is the number of embedded natural fractures in the gridblock, 𝑤𝑖 is the volume 

of the i-th fracture bounded in that gridblock divided by the total volume of fractures in 
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that cell, and 𝑇𝑚−𝑓,𝑖 is the transmissibility of the i-th fracture with the matrix gridblock. 

The schematic for the 𝑓 − 𝑓 , 𝐹 − 𝑓  connections are shown in Fig. 2.5, and the 

transmissibilities could be calculated in a similar weighted sum. 

 

Figure 2.5: Schematic for the f-f, F-f connections. 
 

The transmissibility 𝑇𝑚−𝑓,𝑖  between embedded natural fracture and matrix is 

calculated by Eq. 1.16. We assume that matrix pressure varies linearly from the fracture 

to the block boundaries. Following this assumption, the average pressure in a matrix 

block is related to the average normal distance from the fracture. The average normal 

distance 〈𝑑〉  is normally calculated by numerical method. However, for most cases, 

analytical solutions could be obtained for reducing the computational cost. For instance, 

〈𝑑〉 of an embedded fracture intersecting with a triangular matrix could be computed as 

an integral form 

〈𝑑〉 =
∫𝒏 ⋅ 𝑥𝑑𝑥

𝑥
=
∫ ∫  𝑑 𝑑𝑦𝑑𝑥 + ∫ ∫  𝑑 𝑑𝑦𝑑𝑥𝑌𝑈2

𝑌𝐿2
𝑋𝑈2
𝑋𝐿2

𝑌𝑈1
𝑌𝐿1

𝑋𝑈1
𝑋𝐿1

𝑥
              (2.18) 

𝑋𝑈1 = 𝑥3 ,   𝑋𝐿1 = 𝑥1 ,   𝑋𝑈2 = 𝑥2 ,   𝑋𝐿2 = 𝑥3                          (2.19) 

𝑌𝑈1 = 𝑦1 +
𝑦1 − 𝑦2
𝑥1 − 𝑥2

(𝑥 − 𝑥1),  𝑌𝐿1 = 𝑦1 +
𝑦1 − 𝑦3
𝑥1 − 𝑥3

(𝑥 − 𝑥1), 

 𝑌𝑈2 = 𝑦1 +
𝑦1 − 𝑦2
𝑥1 − 𝑥2

(𝑥 − 𝑥1),  𝑌𝐿2 = 𝑦3 +
𝑦2 − 𝑦3
𝑥2 − 𝑥3

(𝑥 − 𝑥3)               (2.20) 

𝑑 =
|(𝑦𝑏 − 𝑦𝑎)𝑥 − (𝑥𝑏 − 𝑥𝑎)𝑦 + 𝑥𝑏𝑦𝑎 − 𝑦𝑏𝑥𝑎|

�(𝑦𝑏 − 𝑦𝑎)2 + (𝑥𝑏 − 𝑥𝑎)2
                         (2.21) 
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where 𝑥  is the triangle area; 𝑑  is the distance of a point from the fracture line. The 

triangle vertices and the intersecting points are shown in Fig. 2.6. For the matrix 

gridblock with rectangular shape, the expression for calculating 〈𝑑〉 becomes simpler. 

 

Figure 2.6: Schematic for an embedded fracture intersecting with matrix gridblock. 
 

Currently, the first hybrid model (EDFM+MINC) we developed could simulate 

3D scenario, but the primary fracture described by EDFM are limited to vertical direction 

(no inclination). For the second hybrid model, all the implementations are 2D, and could 

be extended to 2.5D model which contains multiple layers in z-direction with trivial 

effort. The challenges associated with the extension to 3D would mostly lie on the 

identification of object intersection and the creation of connection-list from 

computational geometry aspect. The average normal distance for 3D geometry could be 

calculated analytically in a similar manner with 2D without difficulty. 

 
 

2.3 Model Validation 
 
2.3.1 Problem 1: Linear Gas Flow of Fractured Well at Constant BHP 
 

Chen and Raghavan (2013) derived a semi-analytical solution for the gas transient 

flow in a one-dimensional reservoir with a fractured well produced at constant pressure 

using the concept of pseudo-pressures. Due to the steepness of pressure drops from the 
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ultra-low permeability matrix to the high-conductivity hydraulic fractures, strong 

nonlinearities associated with the gas properties would exist. To verify the numerical 

solutions presented in this paper, we compared our simulator with the semi-analytical 

solution in the presence of large permeability contrast between matrix and fracture. 

The fracture is simulated by the EDFM based on structured grid. The data used in 

the simulation of this validation problem appear in Table 2.1. We implement the 

correlations from Azizi et al. (2010) for the gas compressibility factor, and Lee et al. 

(1966) for gas viscosity. 

Simulations are performed with a different number of gridblocks (161, 401, 1001, 

2001, and 4001). The log-log plot for the gas rate over time of the analytical and 

numerical solution is shown in Fig. 2.7. Only slight differences are observed at the early 

period using the coarsest simulation model. Note that the semi-analytical solution is valid 

for infinite-acting flow, which results in the decrease of numerical result at the late 

boundary flow. We also compare the relative error between the analytical and numerical 

solutions for different cases to examine the grid sensitivity. The relative error 

𝜀𝑁 =
𝑚𝑎𝑥(|𝑞𝑎(𝜕) − 𝑞𝑁(𝜕)|)

𝑚𝑎𝑥[|𝑞𝑎(𝜕)|, 1]                                            (2.22) 

The results appear in Fig. 2.8. A quadratic relationship between the number of 

gridblocks and the relative error is observed. 

Table 2.1: Parameters for Problem 1. 

𝑥𝑓 
(𝑚) 

ℎ 
(𝑚) 

𝑘𝑚 
(𝑚2) 𝜙𝑚 𝐿 

(𝑚) 
𝑝𝑖 

(𝑀𝑃𝑎) 
𝑝𝑤𝑓 

(𝑀𝑃𝑎) 𝑥𝑆 𝑇 
(𝐾) 

30.48 30.48 1.0e-
 

0.06
 

80 48.26 3.45 0.65 366.48 
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where 𝑥𝑓 is the fracture length; ℎ is the fracture height; 𝑘𝑚 is the matrix permeability; 𝜙𝑚 

is the matrix porosity; 𝐿 is the model length; 𝑝𝑖 is the initial pressure; 𝑝𝑤𝑓 is the fracture 

pressure; 𝑥𝑆 is the gas gravity; 𝑇 is the temperature. 

 

Figure 2.7: Gas rate of the semi-analytical and numerical solution (with 161, 4001 
number of gridblocks). 
 

 

Figure 2.8: Relative error versus number of gridblocks. 
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2.3.2 Problem 2: Two-Dimensional Transient Flow with Multiple Hydraulic Fractures 
 

We apply the solution of Ozkan and Raghavan (1991) to describe liquid flow 

from a rectangular reservoir into infinite-conductivity vertical fractures. Uniform flux is 

assumed at the fracture surface. The EDFM based on unstructured triangular grid is used 

to simulate the fractures, and we compare the case with three fractures at the reservoir 

center. The reservoir is discretized into 10351 triangular gridblocks. The parameters used 

in the validation problem are summarized in Table 2.2. Due to the coarse grid we employ 

around fractures, the matrix permeability of the model is set to be high. For the cases with 

ultra-low matrix permeability, LGR is still needed to capture the large potential gradient. 

Fig. 2.9 shows the log-log plot of dimensionless pressure and pressure derivatives versus 

dimensionless time of the semi-analytical and numerical solutions. As can be seen, the 

fracture model based on unstructured EDFM could capture various flow regimes (linear, 

pseudo-radial, and boundary-dominant flow), and transient pressure behavior with 

acceptable accuracy. 

 

Figure 2.9: Comparison result for pressure and pressure derivative between semi-
analytical and numerical solution. 
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Table 2.2: Parameters for Problem 2. 
𝑘   

(𝑚2) 𝜙 𝜇 
(𝑃𝑎. 𝑠) 

𝐶𝑖 
(𝑃𝑎−1) 

𝑄 
(𝑚3/𝑠) 

ℎ 
(𝑚) 

𝑥𝑒 
(𝑚) 

𝑦𝑒 
(𝑚) 

𝑥𝑓 
(𝑚) 

𝐿𝑓 
(𝑚) 

1.0e-14 0.4 1.0e-3 1.0e-9 1.0e-4 20 600 800 30 100 
 

where 𝑥𝑒 , 𝑦𝑒  is the reservoir length and width; 𝑥𝑓  is the fracture half-length; 𝐿𝑓  is the 

fracture spacing. 

 
 
2.3.3 Problem 3: Hybrid Fracture Model I (EDFM-MINC) 
 

In order to validate the first proposed hybrid model, we compare simulation 

results with those obtained using a LS-LR model. The model parameters are summarized 

in Table 2.3. One primary fracture described by EDFM is in the middle of the reservoir 

and its length is the same with the reservoir length in y direction. The model is 2-

dimensional and the formation is fully penetrated by the vertical fractures. The flow 

model is single-phase (gas) without any special mechanisms such as desorption or 

diffusion. The stimulated area contains 10 × 5 number of fracture network blocks. We 

use the same logarithmic-scale for both gridding in the hybrid and reference model. 

Table 2.3: Parameters for Problem 3. 
Parameter Value Unit 
Fracture network blocks 10 × 5  
Formation thickness 20 m 
Initial reservoir pressure 16 MPa 
Temperature 343.15 K 
Matrix porosity 0.1  
Number of matrix nested-cells 7  
Primary fracture permeability 5.0e-12 m2 
Fracture porosity 1.0  
Fracture width 4.0e-3 m 
Fracture network spacing 10 /30 /60 m 
Well radius 0.1 m 
Producer BHP 4 MPa 

 



 39 

Table 2.4: Permeability of matrix and fracture network for the three cases. 
Case Matrix Fracture network 
1 1.0e-20 5.0e-14 
2 1.0e-19 5.0e-14 
3 1.0e-19 5.0e-13 

 
Table 2.5: Number of gridblocks for the hybrid and reference models and CPU time ratio. 

 MINC blocks Number of gridblocks CPU time ratio 

Hybrid 
10 × 5 400 1:33 
20 × 10 1600 1:9 
30 × 15 3600 1:4 

Reference  11476 1:1 
 

 

Figure 2.10: Comparison result for the gas rates of 10m fracture spacing. 
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Figure 2.11: Comparison result for the gas rates of 30m fracture spacing. 
 

 

Figure. 2.12: Comparison result for the gas rates of 60m fracture spacing. 
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represent the typical value range for a fractured shale-gas reservoir (shown in Table 2.4). 

The log-log plots for the gas rates obtained from the hybrid and reference models are 

shown in Figs. 2.10/2.11/2.12. The results show that the hybrid model with the coarse 

grid (400 gridblocks) could match the reference model accurately for most cases. 

However, for the cases with large spacing and small permeability of the fracture 

network, large discrepancies in gas rates are observed at the early production period. This 

indicates that in such scenarios, having one fracture cell per fracture network block for 

the hybrid model is not adequate to properly resolve the pressure variation in the fracture. 

Therefore we simply refine the MINC gridblocks for higher resolution within the fracture 

network, and then the results with acceptable accuracy are obtained. Moderate level of 

local grid refinement (LGR) could also be employed around the primary fracture to 

optimize the total number of simulation gridblocks (MINC gridblocks). 

The total simulation time is 1000 days with a constant 1 day time step size. The 

number of gridblocks for the hybrid and reference models, and the ratios of the elapsed 

CPU time for the hybrid model to the reference model are summarized in Table 2.5. In 

general, the hybrid model could substantially reduce gridblock quantity compared with 

the reference model, and thus greatly improve the computational efficiency. 

 
 
2.3.4 Problem 4: Hybrid Fracture Model II (Unstructured DFM) 
 

A synthetic model is generated to contain a single-stage hydraulically-fractured 

horizontal well in the center of a reservoir with a complex primary fracture network. The 

model also incorporates a natural fracture DFN that is stochastically generated using a 

Monte-Carlo simulation technique. Log-normal prior models are applied for the 
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parameters of the natural fracture system; length, orientation, density, and location. The 

specifications of the model appear in Table 2.6, and unlisted parameters remain the same 

as in Table 2.3. We consider two-phase (gas and water) flow with no storage or non-

standard transport mechanisms. The parameters for relative permeability and capillary 

pressure are summarized in Tables 2.7 and 2.8. 

Table 2.6: Parameters for Problem 4. 
Parameter Value Unit 
Reservoir dimensions (x,y,z) 100, 100, 10 m 
Initial reservoir pressure 14 MPa 
Initial water saturation 0.4  
Fracture porosity 0.8  
Matrix permeability 5.0e-19 m2 
Water viscosity 5.0e-4 Pa. s 
Water compressibility 4.3946e-10 1/Pa 
Matrix compressibility 1.0e-9 1/Pa 
Fracture compressibility 1.0e-8 1/Pa 
Natural fracture width 3.0e-4 m 
Hydraulic fracture width 3.0e-3 m 
Natural fracture permeability 5.0e-14 m2 
Hydraulic fracture permeability 5.0e-12 m2 

 
Table 2.7: Parameters for relative permeability. 

Irreducible water saturation 𝑥𝑙𝑟 0.15 
Exponent 𝜆 0.45 

Irreducible gas saturation 𝑥𝑔𝑟 0.05 
 

Table 2.8: Parameters for capillary pressure. 
 Shale matrix Fractures 

Irreducible water 
  

0.05 0.05 
Exponent 𝜆 0.45 0.55 
𝑃0 (Pa) 1.0 × 105 5.0 × 104 
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Figure 2.13: Schematics for the hybrid (9916) and reference (fine-scale) model. 

 

 
Figure 2.14: Pressure profile of the matrix at 600day for the hybrid (9916) and reference 
model. 
 

 
Figure 2.15: Pressure profile of the matrix at 1200day for the hybrid (9916) and reference 
model. 
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Figure 2.16: Gas rates for the first 100 and 1200 days obtained from the hybrid and 
reference model. 
 

We validate the hybrid model and the associated upscaling procedure by 

comparison to a fine-scale DFM model where all fractures are discretized explicitly. The 

reference fine-scale model comprises 18239 grid blocks (matrix and fracture). A 

sequence of 3 hybrid grids is generated with 4616, 6460, and 9916 grid blocks 

respectively which correspond to refinement ratios of approximately 0.25, 0.35, and 0.55 

relative to the reference grid dimension. For each of the three hybrid grids, the 

stochastically generated natural fractures are upscaled using our proposed procedure 

while the primary fractures are discretized explicitly. Fig. 2.13 shows the finest hybrid 

grid and the reference grid. The fine-scale reference model results in much more 

gridblocks than the hybrid model due to the complex geometry of the natural fracture 

network, which should be honored precisely by grid refinement to maintain satisfying 

grid quality. All four models are run to a total simulation time of 1200 days using a 

constant 5 day time step size. 

The pressure profiles of the matrix obtained at 600 and 1200 day using the finest 

hybrid grid and the reference grid appear in Figs. 2.14/2.15. The transient gas rates 
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obtained from the hybrid and reference model are shown in Fig. 2.16 for the first 100 and 

1200 days. The hybrid models provide accurate solutions for both early transient and 

long-term production periods. We note that the natural fracture network selected for this 

case is relatively sparse. This choice is made due to the difficulty in generating a quality 

mesh for the reference model. In practice, it is anticipated that for denser fracture 

networks, significant gains in computational efficiency would be obtained by the use of a 

hybrid model compared to the reference model. The relative CPU times for the hybrid 

model simulations relative to the reference model are 0.21, 0.31, and 0.53 respectively. 

 
 

2.4 Further simulation examples 
 
2.4.1 Hybrid Model I: EDFM-MINC 
 

During the development phase of an unconventional reservoir in order to 

determine well spacing for infill projects, multiple wells (sector modeling) may have to 

be incorporated into the simulation model. To demonstrate the capability and the 

efficiency of the EDFM-MINC hybrid model for simulating multi-well scenarios, a shale 

gas reservoir model with two parallel horizontal wells (well spacing: 200m) intersected 

by a complex network of primary fractures is established. The hydraulically activated 

fracture network is described by the SRV concept. The schematic of the model and the 

parameters modified from Table 2.6 are shown in Fig. 2.17 and Table 2.9. 



 46 

 

Figure 2.17: Schematic of the two-well interference model. 

Table 2.9: Modified parameters for the two-well model. 
Parameter Value Unit 
Reservoir dimensions (x,y,z) 400, 300, 10 m 
Gridblock size (x,y,z) 10, 10, 10 m 
Matrix permeability 2.0e-20 m2 
Natural fracture permeability 1.0e-13 m2 
Rock density 2500 kg/m3 
Langmuir pressure, CH4 4.0 MPa 
Langmuir volume, CH4 0.018 m3/kg 

 

2.4.1.1 Effect of MINC Refinement and Fracture Network Spacing:  In order to 

determine the optimal number of MINC nested-cells for this simulation case, we perform 

sensitivity analysis for the relation between MINC refinement and fracture network 

spacing. The fluid system contains gas (initial water saturation set to zero), and 

desorption from the matrix is considered given that the steepness of the potential gradient 

around the fracture network will be exacerbated where desorption is present (Freeman et 

al. 2013). Only Well 2 is open for production in this simulation study. We compare the 

fracture spacing (L=10, 30, 60m), with combination of nested-cells quantity for MINC 

(Nm=1, 4, 7). The gas rates of Well 2 for different cases are shown in Fig. 2.18. From the 

result we could see that the dual-porosity model (Nm=1) completely misses the transient 
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flow behavior of the ultra-tight matrix for a long period. For smaller fracture spacing case 

(L=10m), smaller difference of the gas rate between Nm=1 and MINC refinement is 

observed as expected, because the time for reaching pseudo-steady state in matrix 

becomes shorter. The result also shows that the differences of gas rate between Nm=4 

and Nm=7 are negligible, indicating that Nm=4 level of refinement is already adequate to 

accurately capture the transient gas rate for this simulation scenario. In addition, fracture 

spacing is an influential factor for gas recovery. Smaller spacing of the fracture network 

could result in more effective gas drainage from matrix and gas desorption from organic 

rock. 

 

Figure 2.18: Gas rates of Well 2 for different combinations of fracture network spacing 
and MINC refinement. 
 

2.4.1.2 Effect of Two-Well Interference:  We perform 2-phase (gas & water) 

simulations for examining the effect of two-well interference. The parameters for relative 

permeability and capillary pressure are shown in Tables 2.7 and 2.8. The initial water 
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saturation is set to 0.4. The number of matrix nested cells is 4, and the fracture spacing is 

30m. We compare the cumulative gas production of Well 2 (right) between the cases with 

only Well 2, and with two wells producing on the same well schedule (shown in Fig. 

2.19). The pressure profiles of the fracture continuum at 500/1000 day are shown in Fig. 

2.20. From the result we could see that well interference may have a large impact on well 

production during the development of unconventional reservoirs, therefore multi-well 

scenarios should be considered for full-field simulation studies. The total simulation time 

is 2200 days with 5 day time step. The CPU time for the two-well case is 2.074 minutes. 

 

Figure 2.19: Cumulative gas production for the two-well case. 
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Figure 2.20: Pressure profile of the fracture continuum at 500/1000 day. 

 
 
2.4.2 Hybrid Model II: UDFM-MINC 
 

We built a reservoir model which comprises one horizontal well with three stages 

of hydraulic fractures to demonstrate the application of the hybrid fracture model II. We 

perform simulation studies to investigate the grid sensitivity and the effect of gas storage 

and transport mechanisms. MINC model with 4 nested-cells are applied for modeling the 

SRV region. Two-phase flow (gas & water) is assumed, and the parameters modified 

from Table 2.9 are shown in Table 2.10. 

Table 2.10: Modified model parameters. 
Parameter Value Unit 
Reservoir dimensions (x,y,z) 160, 100, 10 m 
Initial water saturation 0.4  
Matrix nested-cells 4  
Natural fracture spacing 30 m 

 

2.4.2.1 Grid Sensitivity:  We first perform simulations for sensitivity analysis of 

different grid resolution. The meshing technique used for our hybrid model yields 

desirable LGR feature around fracture, and produce quality meshes that are well oriented 

in a radial pattern around fracture tips. We run three cases with different levels of grid 
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refinement around primary fracture (number of triangular meshes is: 2771, 4545, 7705). 

The mesh configuration and pressure profile of the fracture continuum at 2200 day of the 

three cases are shown in Fig. 2.21, and the log-log plot of the transient gas rates for the 

first 100 and 2200 days is shown in Fig. 2.22. As expected, minor differences in gas rate 

are observed among the three cases, because the conductivity contrast between primary 

fracture and fracture network is not so distinct. As previously mentioned, large potential 

gradient will not exist in the fracture network of the hybrid model (DFM+MINC), and 

extreme potential gradient in the matrix could be properly resolved by MINC. Therefore, 

relatively coarse grid refinement is already adequate to capture the transient flow 

behavior. The total simulation time is 2200 days with 5 day timestep. The CPU times for 

the three cases (2771, 4545, 7705) are 7.771, 11.999, 17.144 minutes, respectively. 
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Figure 2.21: Mesh configuration and pressure profile of the fracture continuum at 2200 
day of the three cases. 
 

   

Figure 2.22: Log-Log plot for the gas rates of the three cases. 
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(“NoApp”), without adsorption and the base model which considers both mechanisms. 

Fig. 2.23 shows the gas rate and cumulative production of the 3 cases. As can be seen, 

the apparent permeability correlation increases the gas production significantly. For more 

sparse fracture network spacing, smaller pore-throat radius and lower bottom-hole 
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significant. In addition, gas desorption also has large impact on well performance. As the 

reservoir pressure decreases, more adsorbed gas is released from organic rock and 

produced. 

 

Figure 2.23: Effect of storage and transport mechanisms on gas rate/cumulative 
production. 
 

2.4.2.3 Uncertainty Analysis of Multiple Realizations for Natural Fracture 

Network: In order to perform the uncertainty analysis of different realizations for natural 

fracture network, three DFN cases are stochastically generated by Monte-Carlo 

simulation based on the same fracture parameters (length, orientation, density, etc.) that 

obey log-normal distribution. The number of natural fractures for the three DFN cases is 

727, 767, 599, respectively. We employ the unstructured upscaling method for the hybrid 

model, and we still use the reservoir model with 4545 number of triangular meshes 

(shown in Fig. 2.21). Fig. 2.24 shows the DFN of natural fracture and the pressure profile 

of the matrix at 2200 day of the three cases. The cumulative gas production for the three 

cases and the base case without any natural fracture is plotted in Fig. 2.25. As can be 

seen, the pre-existing natural fractures have noticeable contribution on total gas 

production, and the regions with higher density and connectivity of natural fractures 

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000

G
as

 P
ro

du
ct

io
n 

Ra
te

 (m
3 /

D
) 

Time (Day) 

AllMechs
NoAdsorption
NoApp

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000Cu
m

ul
at

iv
e 

G
as

 P
ro

du
ct

io
n 

(1
04 m

3 )
 

Time (Day) 

AllMechs
NoAdsorption
NoApp



 53 

experience more effective depletion pattern. In addition, different realizations of natural 

fracture network may result in large difference in well performance. Such uncertainty 

analysis could be very useful for the model calibration during reservoir characterization. 

The hybrid fracture model could also be used efficiently to optimize fracture treatment 

and completion strategy under the uncertainty of natural fracture distribution. The total 

simulation time is 2200 days with 5 day timestep. The CPU times for the three DFN 

cases (727/767/599) and the case without any natural fracture are 3.518/3.807/3.421 and 

2.296 minutes, respectively. 

 

 

 

Figure 2.24: Stochastically generated DFN and pressure profile of the matrix at 2200 day 
of the three cases. 
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Figure 2.25: Cumulative gas production for the three cases and the base case. 
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CHAPTER 3 
 

RATE TRANSIENT EFFECTS OF VARIOUS COMPLEX FRACTURE 
NETWORK TOPOLOGIES 

 
 

In this chapter, we implement a lower-dimensional DFM model based on 

unstructured gridding for handling the complex fracture geometries of hydraulic fracture 

in stimulated formation. Optimized local grid refinement (LGR) is employed to 

accurately capture the transient flow regime around fractures. A consistent spatial 

discretization scheme called mimetic finite difference (MFD) method is applied for 

handling the anisotropy in matrix permeability, and the non-orthogonality of the 

unstructured triangular/tetrahedral grid. 

We examine the effects of the irregular fracture pattern with multiple orientations 

on the production profile of multiple-fractured horizontal well in unconventional gas 

reservoir. High-fidelity numerical solutions are provided to simulate rate transient from 

several fracture topologies, and three-dimensional studies are performed for inclined 

fracture geometry. We also investigate the effects of storage and transport mechanisms in 

ultra-tight porous media. In addition, rate transient analysis (RTA) is performed using the 

theory of linear flow analysis for several simulation cases. 
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3.1 Numerical Model and Simulation Approach 
 

We consider single-phase system in porous media which fills the domain Ω ⊂ ℝ𝑑 

(d = 2 or 3). The model assumes gas is stored in fracture as free phase, while in matrix as 

both free and adsorbed phase. The governing equation is the conservation of gas molar 

mass 

𝜕
𝜕𝜕
�𝜙𝜌 + (1 − 𝜙)𝑚𝑔� + 𝛻 ⋅ �𝐹𝑎𝑎𝑎𝜌𝒖� = 𝑞𝑓𝑚 + 𝑞𝑊                        (3.1) 

we consider the gas adsorption 𝑚𝑔 described by Langmuir isotherm in the accumulation 

term, and multiply apparent permeability correction 𝐹𝑎𝑎𝑎 with the flux term to consider 

gas diffusion and slippage. 𝑞𝑓𝑚 denotes the mass communication between fracture and 

matrix, and it has the similar expression as flux term. 

We implement the lower-dimensional DFM model in our generic, multi-

continuum numerical simulator which incorporates several storage and transport 

mechanisms for unconventional gas reservoirs. Mimetic finite difference method is 

applied for discretizing the governing equations. 

 
 
3.1.1 Unstructured Gridding for Complex Fracture Network 
 

Cartesian grid system is widely applied for reservoir simulation purposes because 

of its simplicity. However, Cartesian grid suffers from the drawback that it cannot 

efficiently represent complex geologies, including non-orthogonal and non-planar 

fractures, and cannot adequately capture the curvilinear flow geometries expected around 

the fracture tips. 

Although the popular Voronoi (PEBI) grid could overcome the issue of grid non-

orthogonality, we use triangular/tetrahedral grid for our lower-dimensional DFM model 
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for the reason that the current gridding technique for Voronoi grid could not properly 

handle fully 3D scenarios. Tetrahedral grid is more flexible than Voronoi grid, and is able 

to accurately capture inclined (slanted) fracture geometry. 

 
 
3.1.2 Mimetic Finite Difference Method 
 

Accurate representation of complex reservoir geology using unstructured mesh, 

and upscaling of high-resolution geostatistical reservoir models into full-tensor 

permeability fields would pose big challenge to numerical discretization techniques for 

reservoir simulation (Alpak 2010). Combined effects of grid non-orthogonality induced 

by mesh distortion and strong permeability anisotropy cannot be resolved by 

conventional two-point flux approximation scheme (TPFA); therefore may result in large 

errors in flow predictions (Aavatsmark 2002). Several consistent discretization schemes 

such as multi-point flux approximation (MPFA), mixed finite-element (MFE) and 

mimetic finite difference (MFD) method were developed to overcome these challenges. 

This work focuses on the MFD method for discretizing the lower-dimensional DFM 

model because of its generality and flexibility in handling the unstructured domains and 

non-planar fracture geometries. MFD exhibits some advantageous characteristics: 1) 

locally conservative, 2) second-order accurate for cell-center potential and first-order 

accurate for cell-face flux on smoothly distorted meshes with heterogeneous and fully 

anisotropic permeability field and 3) leads to a sparse symmetric positive definite 

coefficient matrix (Alpak 2010). 

For simplicity, let us consider the incompressible single-phase flow equation 

𝛻 ∙ 𝒖 = 𝑞,         𝒖 = −𝑲𝛻𝑝                                                (3.2) 
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a consistent, finite-volume formulation for general polygonal and polyhedral grid gives 

the cell-based, local discretization of Darcy’s law as (Lie et al. 2012) 

𝒖𝑖 = 𝑻𝑖(𝒆𝑝𝑖 − 𝝅𝑖)                                                      (3.3) 

where 𝒖𝑖 is a vector of all fluxes associated with a cell 𝛺𝑖, 𝒆 = (1, … ,1)𝑇, 𝝅𝑖 is a vector 

of face pressures, and 𝑻𝑖  is a matrix of one-sided transmissibilities. The local 

discretization is 

𝑴𝑖𝒖𝑖 = 𝒆𝑝𝑖 − 𝝅𝑖                                                        (3.4) 

where the matrix 𝑴𝒊 is referred to as the local inner product. 

In the following formulation, the continuity of fluxes across cell faces is 

introduced as a set of equations that together with mass conservation and Darcy’s law 

constitute a coupled system for cell pressure, face pressure, and fluxes. By collecting the 

local discretization on each cell, we could derive a linear system of discrete global 

equations (Singh 2010) 

�
𝐁 𝐂 𝐃
𝐂𝐓 𝟎 𝟎
𝐃𝐓 𝟎 𝟎

� �
𝒖
−𝒑
𝝅
� = �

𝟎
𝒒
𝟎
�                                                (3.5) 

where the first row in the block-matrix equation corresponds to Eq .4 for all grid cells. 

The vector 𝒖 contains the outward fluxes associated with half faces ordered cell-wise, the 

vector 𝒑 contains the cell pressures, and 𝝅 the face pressures. The matrices 𝐁 and 𝐂 are 

block diagonal with each block corresponding to a cell. Each column of 𝐃 corresponds to 

a unique interface in the grid and has two unit entries for interfaces between cells in the 

interior of the grid. Similarly, 𝐃 has a single unit entry in each column that corresponds 

to an exterior interface. 
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MFD methods are constructed so that they are exact for linear pressure fields and 

give a symmetric positive-definite matrix 𝑴𝒊. Consider two neighboring gridcells 𝐾 and 

𝐾′  with interface 𝐸  (that is, 𝐸 = 𝐾 ∩ 𝐾′), shown in Fig. 3.1. Let 𝒏𝐾  denote the area-

weighted normal vector to 𝐸 and 𝒙𝐾 be the vector pointing from the centroid of cell 𝛺𝐾 

to the centroid of face 𝐸. 

 
Figure 3.1: Schematic for two neighboring gridcells. 

All vectors 𝒙𝐾  and 𝒏𝐾  defined for the cell 𝛺𝐾  are collected as rows in two 

matrices 𝑿𝑖  and 𝑵𝑖 . We see that the matrices 𝑴𝒊  and 𝑻𝒊  must satisfy the following 

consistency conditions (Brezzi et al. 2005) 

𝑴𝑵𝑲 = 𝑿,      𝑵𝑲 = 𝑻𝑿                                                 (3.6) 

how to obtain a symmetric positive-definite matrix 𝑴𝒊  is the key step for the MFD 

method. A strict theorem is presented by Brezzi et al. (2005), where they give a recipe for 

constructing 𝑴𝒊. The symmetric and positive definite inner product that fulfills Eq. 3.6 

can be represented in the compact form 

𝑴 =
1

|𝛺𝑖|
𝑿𝑲−1𝑿T + 𝑸𝑁

⊥𝑺𝑀𝑸𝑁
⊥T                                            (3.7) 

=
1

|𝛺𝑖|
𝑿𝑲−1𝑿T + 𝑷𝑁⊥𝑺𝑀𝑷𝑁⊥  
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where 𝑺𝑀 denotes any symmetric, positive definite matrix, 𝑸𝑁
⊥  is an orthonormal basis 

for the left null space of 𝑵T, and 𝑷𝑁⊥  is the null-space projection 𝑰 − 𝑸𝑵𝑸𝑵
T in which 𝑸𝑵 

is a basis for the spaces spanned by the columns of 𝑵. 

Similarly, we can derive a closed expression for the inverse inner product 𝑻 

𝑻 =
1

|𝛺𝑖|
𝑵𝑲𝑵T + 𝑸𝑋

⊥𝑺𝑇𝑸𝑋
⊥T                                             (3.8) 

=
1

|𝛺𝑖|
𝑵𝑲𝑵T + 𝑷𝑋⊥𝑺𝑇𝑷𝑋⊥ 

where 𝑸𝑋
⊥ is an orthonormal basis for the left nullspace of 𝑿T and 𝑷𝑋⊥ = 𝑰 − 𝑸𝑿𝑸𝑿

T is 

the corresponding nullspace projection. 

In this work, the following inverse inner product has been used (Singh 2010) 

𝑻 =
1

|𝛺𝑖|
�𝑵𝑲𝑵T +

6
𝑑

trace(𝑲)𝑨(𝑰 − 𝑸𝑸T)𝑨�                             (3.9) 

where 𝑨 is the diagonal matrix containing face areas and 𝑸 = orth(𝑨𝑿), 𝑑  the space 

dimension, and 𝑰 the identity matrix. 

For the conventional TPFA scheme, the resulting 𝑻𝑖 matrix is diagonal, and the 

one-sided transmissibility for gridcell 𝐾 sharing interface 𝐸 is 

𝑇 = 𝒏 ∙ 𝑲𝒙/|𝒙|2                                                      (3.10) 

in the two-point method, the linear system is developed by combining mass conservation 

and Darcy’s law into one second-order discrete equation for the pressure. Then the total 

face transmissibility that combines two half-transmissibilities in a harmonic average for 

two neighboring cells could be calculated. 
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3.1.3 Lower-Dimensional DFM Discretization 
 

The reservoir and fracture are modeled in two separate domains in this work. The 

reservoir model is set in Ω ⊂ ℝ𝑑 (d = 2 or 3). Since fractures have an order of magnitude 

smaller length scale (fracture width) compared to reservoir, the boundary is represented 

as a lower dimensional surface in ℝ𝑑−1. We apply the method called fracture cross flow 

equilibrium (FCFE) which is introduced by Hoteit and Firoozabadi (2008) to determine 

the boundary condition for fracture and matrix communication. The pressure is assumed 

to be equal along the fracture width, and thus only the degree of freedom for fracture cell 

pressure is remained at the fracture-matrix interface. The schematic for FCFE concept is 

shown in Fig. 3.2. 

 

Figure 3.2: Schematic of FCFE concept for treating fracture-matrix interface (modified 
from Hoteit and Firoozabadi 2008). 
 

As previously mentioned, in mimetic finite difference method the flux is written 

locally for all faces within each gridcell. To assemble all the gridcells together, the 

following continuity conditions for the flux and the pressure are imposed at each 

interface 𝐸 of two neighboring matrix gridcells 𝐾 and 𝐾′ (𝐸 = 𝐾 ∩ 𝐾′). We use 𝑞𝐾,𝐸
𝑚  for 

the gas mass flux in the following discussions. 

If 𝐸  is neither a fracture nor a barrier, the continuity of flux and pressure is 

imposed 
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�
𝑞𝐾,𝐸
𝑚 + 𝑞𝐾′,𝐸

𝑚 = 0
𝜋𝐾,𝐸
𝑚 = 𝜋𝐾′,𝐸

𝑚                                                      (3.11) 

If 𝐸 is a fracture, the total flux across both sides of the matrix-fracture interface 

defines the transfer function 𝑄𝐸
𝑓 at 𝐸, which acts as a sink/source term. The continuity of 

the pressure across the fracture-matrix interface 𝐸 is imposed 

�
𝑞𝐾,𝐸
𝑚 + 𝑞𝐾′,𝐸

𝑚 = 𝑄𝐸
𝑓 

𝜋𝐾,𝐸
𝑚 = 𝜋𝐾′,𝐸

𝑚 = 𝑝𝐸
𝑓                                                   (3.12) 

In addition to the above conditions, the flux and pressure at the domain 

boundaries are described by the Neumann or Dirichlet boundary conditions. If the 

interface 𝐸 is at the domain’s boundary, then 

�
𝑞𝐾,𝐸
𝑚 = 𝑞𝐸𝑁 
𝜋𝐾,𝐸
𝑚 = 𝜋𝐸𝐷

                                                          (3.13) 

where 𝜋𝐸𝐷 is a Dirichlet boundary condition, and 𝑞𝐸𝑁 is a Neumann boundary condition. In 

this work, we assume an impermeable boundary and set 𝑞𝐾,𝐸
𝑚  to be zero at the boundary. 

The linear system as in Eq. 3.5 may also be derived for the fracture domain, and 

from Eq. 3.11/3.12/3.13, we can eliminate the flux variables and construct a system 

consisting of the unknowns for cell pressure and face pressure. For the discretization of 

the compressible real-gas flow described by Eq. 3.1, the system will become nonlinear 

and can be solved by Newton’s method. 

 

Figure 3.3: Schematic for fracture intersection. 
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For fracture-fracture intersection 𝑒, we assume that the interface has a negligible 

volume,  and thus no mass accumulation is considered. Similar continuity conditions as 

in Eq. 3.11 is imposed at 𝑒. The schematic for fracture intersection is shown in Fig. 3.3. 

⎩
⎪
⎨

⎪
⎧
�𝑞𝐾𝑖,𝑒

𝑓
𝑖𝑒

𝑖=1

= 0

𝜋𝐾𝑖,𝑒
𝑓 = 𝑝𝑒

𝑓

                                                       (3.14) 

where 𝑛𝑒 is the number of fracture cells that connect to the intersection 𝑒 and 𝑝𝑒
𝑓 is the 

fracture intersection pressure. 

 
 

3.2 Simulation Results and Discussions 
 

We build a base model which comprises one horizontal well with five stages of 

hydraulic fractures to demonstrate the application of the developed DFM model. The 

base model parameters are summarized in Table 3.1. The hydraulic fractures are assumed 

to fully penetrate the formation. Gas desorption and the apparent permeability for gas 

transport mechanism are considered. We assume that the well is located in a drainage 

region that extends beyond the fracture tips, and the flow contribution from outside of 

this region is negligible. We set impermeable boundaries at the outer limits of our 

drainage region. 

We run simulation studies to demonstrate the applicability of our lower-

dimensional DFM model. We examine the effects of the irregular fracture pattern with 

complex geometries on the transient gas rate of multiple-fractured horizontal wells. 
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Table 3.1: Base model parameters. 
Parameter Value Unit 
Reservoir dimensions (x,y,z) 200, 140, 10 m 
Initial reservoir pressure 16 MPa 
Temperature 343.15 K 
Matrix porosity 0.1  
Fracture porosity 1.0  
Intrinsic matrix permeability 1.0e-19 m2 
Rock density 2500 kg/m3 
Langmuir pressure, CH4 4.0 MPa 
Langmuir volume, CH4 0.018 m3/kg 
Matrix compressibility 1.0e-9 1/Pa 
Fracture compressibility 1.0e-8 1/Pa 
Fracture width 1.0e-3 m 
Fracture permeability 1.0e-12 m2 
Fracture spacing 25 m 
Fracture half-length 30 m 
Well radius 0.1 m 
Producer BHP 4 MPa 
Production time 2500 day 

 
 
 
3.2.1 Effect of Storage and Transport Mechanisms 
 

High-resolution is needed near fracture to capture the large pressure gradient and 

the corresponding changes of the gas compressibility and viscosity in the ultra-tight 

matrix. The meshing technique used for the DFM model yields desirable local grid 

refinement (LGR) feature around fracture, and produce quality meshes that are well 

oriented in a radial pattern around fracture tips. The LGR feature ensures that the 

evolution of flow regimes is accurately represented. 

We study the effect of storage and transport mechanism using the reservoir model 

with 10334 number of triangular meshes. We compare the results of 4 cases: without 

apparent permeability (“NoApp”), without adsorption, the base model which considers 

both mechanisms (“AllMechs”) and does not consider any mechanism (“NoMechs”). The 
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mesh configuration and the pressure profile in the reservoir at 2500 day for the 

“AllMechs” case are shown in Fig. 3.4, and the log-log plot of the gas rates for the 4 

cases is shown in Fig. 3.5. From the gas-rate curve of the “NoMechs” case, 4 different 

flow regimes that are expected in a multiple-fractured horizontal well (MFHW) system 

could be identified: 

1. Fracture linear flow (flow regime I, 1e-4 day to 1e-2 days): hydraulic fractures start 

flowing to the horizontal wellbore; 

2. Transition flow (flow regime II, 1e-2 day to 1 days):  the transition from fracture 

bilinear flow to formation linear flow; 

3. Formation linear flow (flow regime III, 1 day to 1000 days): formation linear flow 

which is perpendicular to the fracture faces, with half slope in log-log plot; the dominant 

flow regime for a typical MFHW in unconventional gas reservoir; 

4. Compound-linear flow (flow regime IV, after 1000 days): hydraulic fractures begin to 

interfere, which results in the deviation from the half slope, and may appear like 

boundary-dominated flow. 

 

Figure 3.4: Mesh configuration and pressure profile at 2500 day of the “AllMechs” case. 
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Figure 3.5: Effect of storage and transport mechanisms on gas rate. 
 

From the results we could see that apparent permeability increases the gas 

production significantly. The gas slippage and Knudsen diffusion tend to have larger 

effect when the pressure becomes lower during late time depletion. For smaller pore-

throat radius and lower bottom-hole pressure, the effect of the gas transport in ultra-tight 

porous medium may become more significant. 

In addition, gas desorption also has large impact on well performance. As the 

reservoir pressure decreases, more adsorbed gas is released from organic rock and 

produced. However, for some moderate to deep shale-gas reservoirs which have high 

initial pressure, the ability to produce the adsorbed gas may be very limited because of 

the Langmuir sorption profile, which requires relatively low pressure to expedite the 

desorption process. 
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3.2.2 Comparison Between TPFA and MFD scheme 
 

Grid non-orthogonality and strong permeability anisotropy may introduce large 

error in flow prediction if conventional two-point flux approximation scheme (TPFA) is 

applied. In this work, a lower-dimensional DFM model is developed based on a 

consistent discretization method called mimetic finite difference (MFD). We run three 

simulation cases with isotropic, diagonal and full-tensor permeability field in matrix for 

comparing between TPFA and MFD scheme. We assume that the full-tensor permeability 

is resulted from the upscaling of fine-scale geological model or detailed discrete fracture 

network model for small-scale/natural fracture. 

The diagonal permeability tensor is 𝑲 = �k𝑚 0.1k𝑚
� , and the full-tensor 

permeability is 𝑲 = � k𝑚 0.2k𝑚
0.2k𝑚 0.5k𝑚

�, where k𝑚 = 1.0e-19 𝑚2. 

The pressure profile of the reservoir at 2500 day for the two cases with diagonal 

and full-tensor permeability field are shown in Figs. 3.6/3.7, respectively. The log-log 

plots of the transient gas rates for the three cases are shown in Figs. 3.8/3.9/3.10. For the 

case with isotropic permeability, the difference of gas rate between TPFA and MFD is 

only observed in the transition flow regime. For the other two cases, larger discrepancies 

are observed between the two methods. As can be seen in the pressure profiles, the lack 

of consistency in the TPFA scheme for handling anisotropy leads to significant grid-

orientation effect. Generally speaking, errors in the solution will appear in varying degree 

depending upon the angles the cell faces make with the principal directions of the 

permeability tensor. Therefore, consistent discretization schemes such as MFD should be 

used for anisotropic model to provide accurate solutions. 
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Figure 3.6: Pressure profile at 2500 day of TPFA and MFD for the diagonal permeability. 
 

 

Figure 3.7: Pressure profile at 2500 day of TPFA and MFD for the full-tensor 
permeability. 
 

 

Figure 3.8: Log-Log plot for the gas rates of the case with isotropic permeability. 
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Figure 3.9: Log-Log plot for the gas rates of the case with diagonal permeability. 

 

Figure 3.10: Log-Log plot for the gas rates of the case with full-tensor permeability. 
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matrix permeability is reset to 4.0e-19 m2, and the other parameters shown in Table.1 

remain unchanged. For all the simulation studies regarding the fracture geometries that 

are presented in the paper, gas desorption and the apparent permeability for gas transport 

are neglected. The mesh configuration and the pressure profile of the reservoir at 2000 

day for the three cases with non-orthogonal fracture geometry are shown in Fig. 3.12, and 

the log-log plot of the gas rates is shown in Fig. 3.11. 

From the results we could observe that the gas-rate profiles for the 4 cases are 

almost identical during the early period. The gas rates of the cases with non-orthogonal 

fracture geometry gradually deviate from the orthogonal case after the occurrence of 

fracture interference, and the case with smaller fracture angularity exhibits fracture 

interference earlier. The non-orthogonal fracture systems also have lower production than 

the orthogonal case with the same fracture half-length, due to the reduced stimulated 

reservoir area within the hydraulic fractures. The results indicate that fractures should be 

designed so that their orientation with respect to the horizontal well should be as close to 

90 degrees as possible. 

 

Figure 3.11: Log-Log plot for the gas rates of the four cases. 
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Figure 3.12: Mesh configuration and pressure profile at 2000 day of the three cases with 
non-orthogonal fracture geometry. 
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shadow” effect may result in smaller fracture length for the inner fractures and non-

planar fracture geometry. We run two cases with non-planar fracture geometry and 

compare the results with the regular fracture configuration. The intrinsic matrix 

permeability is reset to 1.0e-19m2, and the fracture total lengths are the same for the 

three cases. The mesh configuration and the pressure profile of the reservoir at 2500 day 

of the two cases with non-planar fracture geometry are shown in Fig. 3.14, and the log-

log plot of the transient gas rates is shown in Fig. 3.15. 

Small differences in the gas rates between regular and non-planar fracture 

geometry are observed, mainly because the fracture total lengths are the same for the 

three cases. The small discrepancies could be induced by the complex flow pattern that 

exhibits near the intersection points of the fracture and the horizontal wellbore. The 

results show that the non-planar fracture geometry has little impact on gas rate for this 

simulation scenario. For more complicated fracture configuration, the effect of non-

planar geometry on fracture spacing and intersection may need to be considered. 

 

Figure 3.13: Fracture geometry induced by the effect of stress shadowing for two cases 
with different fracture spacing. 
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Figure 3.14: Mesh configuration and pressure profile at 2500 day of the two cases with 
non-planar fracture geometry. 
 

 

Figure 3.15: Log-Log plot for the gas rates of the three cases. 
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3.2.5 Effect of Inclined Fracture Geometry 
 

For the same reason as we discuss in the “effect of non-orthogonal fracture 

geometry” section, the hydraulic fracture planes may also be inclined (slanted) from the 

vertical direction. We run 3-D simulation studies for 4 cases with different fracture 

inclination angles to the horizontal plane (90, 60, 45, 30 degrees), to investigate the 

impact of inclined fracture geometry on gas rate. The sizes of the fracture planes are the 

same for all cases. The parameters modified from Table 3.1 (the others remain unchanged) 

are shown in Table 3.2. The mesh configuration of the model that contains 3 hydraulic 

fractures is shown in Fig. 3.16, and the log-log plot of the transient gas rates is shown in 

Fig. 3.17. Optimized local grid refinement is still employed to capture the large pressure 

gradient around the fracture plane. 

Table 3.2: Model parameters. 
Parameter Value Unit 
Reservoir dimensions (x,y,z) 200, 100, 10 m 
Intrinsic matrix permeability 4.0e-19 m2 
Fracture spacing 50 m 
Fracture half-length 20 m 
Fracture height 10 m 

 

From the result we could see that the gas-rate profiles for the 4 cases are almost 

identical during the early period. The discrepancies in gas rate are observed during the 

formation linear flow regime. The inclined fracture systems have higher production than 

the vertical case (90 degrees), simply because the reservoir volume connecting to the top 

and bottom boundaries of the fracture plane for the inclined fracture is larger than the 

vertical fracture (fracture fully penerates the formation). The result indicates that 

hydraulic fracture should be designed to penetrate as large formation volume as possible 

for maximizing well performance. 
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Figure 3.16: Mesh configuration of the model that contains 3 hydraulic fractures. 

 

Figure 3.17: Log-Log plot for the gas rates of the four cases. 
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Figure 3.18: Mesh configuration of the regular and complex cases. 

   

Figure 3.19: Pressure profile at 50/200 day for the complex case with the secondary 
fracture network. 
 

 

Figure 3.20: Log-Log plot for the gas rates of the two cases. 
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Figure 3.21: The plot of inverse gas rate vs. √t for the two cases. 
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the pressure profile, which results in a gradual slope transition to the formation linear 

flow in terms of the base hydraulic fracture. 

We also establish three cases for the fracture network with complex pattern. The 

mesh configurations for the three cases are shown in Fig. 3.22. The plot of inverse gas 

rate versus sqrt(t) for the base case (contains only a single hydraulic fracture) and the 

three complex cases is shown in Fig. 3.23. 

 

 

 

Figure 3.22: Mesh configurations of the three cases. 
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Figure 3.23: The plot of inverse gas rate vs. √𝜕 for the base case and the three complex 
cases. 
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properties as summarized in Table 3.3 (These properties are typical of horizontal well in 

the Cana Woodford Shale reservoir). 

Table 3.3: Model parameters. 
Parameter Value Unit 
Reservoir dimensions (x,y,z) 100, 500, 201 ft 
Initial reservoir pressure 8820 psia 
Temperature 207 F 
Matrix porosity 0.08  
Fracture permeability 1 d 
Fracture half-length 200 ft 
Producer BHP 2000 psia 
Production time 400 day 

 

As is typical for field observations, production data are measured on a daily basis, 

so any rate transient features whose duration is less than one day are not observable. For 

this part of the study, we consider four fracture geometries, all with the same underlying 

fracture half length); geometries for the complex fracture cases are depicted in Fig. 3.24. 

 
Secondary Fractures #1 

 
Secondary Fractures #2 

 
Complex Fractures 

Figure 3.24: Complex fracture geometries investigated for RTA Analysis. 
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We produced each of the systems at constant bottom-hole flowing pressure for 

400 days, and plot the resulting rate-normalized pseudopressure drops versus linear 

superposition time as shown in Fig. 3.25. All of the systems yielded straight lines at late 

times with slopes within 3% of the base case slope, but with negative intercepts that 

increased in magnitude as the fracture complexity increased. We computed estimates of 

fracture half length  𝑥𝑓  from the slopes (m) of the superposition plot using 

√𝑘𝑥𝑓 =
200.8𝑇
𝑚ℎ

�
1

𝜑𝜇𝑖𝑎𝑖𝑖
                                              (3.16) 

and the input value of permeability (10 nd); these values are shown in Table 3.4. As 

expected, these values are high due to the variation in gas compressibility-viscosity 

product. We apply the drawdown correction suggested by Ibrahim and Wattenbarger 

(2006) 

𝑓𝐶𝐶 = 1 − 0.0852𝐷𝐷 − 0.0857𝐷𝐷2                                      (3.17) 

where, 

𝐷𝐷 =
𝑚(𝑝𝑖) −𝑚�𝑝𝑤𝑓�

𝑚(𝑝𝑖)
                                               (3.18) 

and obtained agreement within 5% of the input data (200 ft). 

Table 3.4: Input and interpreted values. 

Case Slope xf, ft Correction, fCP xf, ft  
(corrected) 

Base 2219 238 0.85 203 
Secondary Frac. # 1 2196 240 0.85 205 
Secondary Frac. # 2 2147 246 0.85 209 

Complex 2147 246 0.85 209 
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Figure 3.25: Superposition Time plots. 
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CHAPTER 4 
 

CONCLUSIONS 
 
 

In this work, we develop a generic simulation platform which allows investigators 

to rapidly implement and experiment with a wide array of alternate physical and 

constitutive models. The simulation platform is designed to incorporate the spectrum of 

known physics inherent in unconventional gas reservoirs, such as the non-Darcy effect 

covering various flow regimes, multi-phase behavior, adsorption/desorption, high-

velocity turbulent flow, as well as the rock un-consolidation of natural fractures network. 

We also implement a compositional module in the simulation platform, for simulating the 

advanced processes such as injecting CO2 into fractured shale gas reservoirs to 

simultaneously enhance gas recovery while sequester carbon. 

We develop two types of hybrid technique that integrate DFM with continuum-

type approaches for the accurate and efficient modeling of the multi-scaled fracture 

system in stimulated unconventional formations. 

The first hybrid model couples EDFM with MINC (EDFM-MINC) in order to 

simulate the SRV for hydraulically fractured tight- and shale plays when detailed fracture 

characterization data for the small-scale fractures is not available. The model is validated 

by comparison to the LS-LR reference solutions. The results show that the model could 

provide better computational efficiency relative to LS-LR while adequately capturing the 

sharp local transients in the ultra-tight matrix. Moreover, flexibility could be obtained to 

model the complex geometry of hydraulic fractures. 
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The second class of hybrid model proposed integrates the unstructured DFM with 

the continuum-type approaches (UDFM-MINC). Optimized local grid refinement (LGR) 

is employed to accurately handle the transient flow regime around primary fractures. An 

upscaling technique is also implemented within the hybrid fracture model in order to 

capture the complex distribution of small-scale/natural fractures using a DK model. The 

potential gradient associated with the fracture and matrix continua could be resolved 

using the refined gridding around primary fractures. We validate the hybrid model and 

the associated upscaling procedure by comparison to a fine-scale DFM model where all 

fractures are discretized explicitly. The results indicate that the hybrid model provides 

accurate solutions for both early transient and long-term production periods. 

Phase equilibrium calculations for CO2-water/brine system are important during 

the CO2-EGR process because aqueous phase are generally present in shale gas 

reservoirs. Therefore a modified EOS is implemented in the phase package of the 

developed simulator to accurately model the mutual solubilities of CO2/hydrocarbon-

brine mixtures. In addition, we consider both effects of pore proximity and capillary 

pressure for the developed compositional model. 

We conduct comprehensive modeling studies towards understanding the key 

reservoir and fracture properties that affect the production performance, and investigating 

the feasibility of CO2 injection for carbon sequestration and enhanced methane recovery 

in shale gas reservoirs. We could obtain following conclusions from the simulation 

results in chapter 3: 

1. Capillary pressure reduces the water evaporation, and the critical properties shift 

caused by pore confinement effect could increase the water mole fraction in gas phase; 
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2. CO2 injection into shale gas reservoirs appears to be a technically feasible method for 

CO2 storage and methane recovery enhancement. 

In addition, we implement a lower-dimensional DFM model based on 

unstructured gridding for handling the non-ideal, non-planar fracture geometries of 

hydraulic fracture in chapter 4. Mimetic finite difference (MFD) method is applied for 

discretizing the lower-dimensional DFM model. 

We examine the effects of the complex fracture pattern with the non-orthogonal, 

non-planar and inclined fracture geometries on the production profile of multiple-

fractured horizontal well in unconventional gas reservoir. Rate transient analysis (RTA) 

is performed using the theory of linear flow analysis for several simulation cases. We 

could obtain following conclusions from the simulation results: 

1. The gas rates of the cases with non-orthogonal fracture geometry gradually deviate 

from the orthogonal case after the occurrence of fracture interference, and the case with 

smaller fracture angularity exhibits fracture interference earlier. The non-orthogonal 

fracture systems also have lower production than the orthogonal case with the same 

fracture half-length; 

2. The inclined fracture systems have higher production than the vertical fracture case, 

because the reservoir volume connecting to the top and bottom boundaries of the fracture 

plane for the inclined fracture is larger than the vertical fracture; 

3. The fracture network that involves secondary fractures greatly improves the gas rate, 

and creates a more complicated flow pattern. From the plot of 1/𝑞𝑔 vs. sqrt(t) for the 

complex case, a sharp transition in the curve slope is observed, due to the rapid depletion 

of the small drainage area within the secondary fracture network. An elliptical flow 
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regime around the fracture network is also observed in the pressure profile, which results 

in a gradual slope transition to the formation linear flow in terms of the base hydraulic 

fracture; 

4. The RTA results suggest that increasing fracture complexity does not affect the late 

time estimate of matrix flow capacity, √𝑘𝑥𝑓. Complex fractures offer a high initial open 

area to flow from matrix to fracture system, and this results in a negative intercept, but 

this initial effect gradually fades as flow in the matrix becomes directed linearly to the 

base fracture half length. 
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