
T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

MODIFIED CONTINUATION-NEWTON

WITH ADAPTIVE STEPLENGTH SELECTION

by
Ruslan Miftakhov

A thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science

in the Discipline of Petroleum Engineering

The Graduate School

The University of Tulsa

2014

T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

MODIFIED CONTINUATION-NEWTON

WITH ADAPTIVE STEPLENGTH SELECTION

by
Ruslan Miftakhov

A THESIS

APPROVED FOR THE DISCIPLINE OF

PETROLEUM ENGINEERING

By Thesis Committee

, Advisor
Rami M. Younis

Albert C. Reynolds

Mohammad Shahvali

ii

COPYRIGHT STATEMENT

Copyright c© 2014 by Ruslan Miftakhov

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means, electronic, mechanical, pho-

tocopying, recording, or otherwise, without the prior written permission of the author.

iii

ABSTRACT

Ruslan Miftakhov (Master of Science in Petroleum Engineering)

Modified Continuation-Newton With Adaptive Steplength Selection

Directed by Rami M. Younis

83 pp., Chapter 5: Discussion And Future Work

(278 words)

Nowadays the Reservoir Simulation domain is being constantly challenged by complex

emerging physics. The modeling of real world problems require increasing the complexity

of partial differential equation, which in addition incorporates physical stiffness onto the

formulation, and the main challenge is to assure that the solution for any problem would

always be obtained. Currently, the Newton-like methods serve as a good tool for solving

nonlinear problems.

The fully implicit scheme is unconditionally stable in terms of discrete approximation,

but at each Newton’s iteration the solution of the nonlinear residual equation cannot be guar-

anteed. To facilitate the convergence, many mathematical as well as heuristic safeguarding

techniques have been developed. Convergence has been achieved in certain cases, but still a

universally efficient algorithm is not claimed. Thus, the simulation of complex processes, for

instance, thermo-compositional simulation does not have an efficient safeguarding strategy.

This work devises an algorithm to address the shortcomings of Newton’s method

for multi-physics problems. The developed nonlinear iterative algorithm is able to acquire

the solution at each global iterate, and it represents the solution of a particular timestep

size which is smaller than the target step. Moreover, the algorithm can efficiently address

complex problems where we do not have reliable safeguarding techniques.

iv

As an example of a complex problem, the three phase simulation on SPE10 geologi-

cal grid is tested. The results are fascinating; the developed Modified Continuation-Newton

requires many fewer linear solves as opposed to the standard Newton method which employs

Eclipse timestepping strategy and is safeguarded by Modified Appleyard chop. The implica-

tions of this are: convergence is always guaranteed for any well-stated problem and timestep

chops do not involve wasted computation.

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and thanks to my advisor, Dr.Rami

Younis: you have challenged and supported me thought this journey. You also kept reminding

me to appreciate intermediate milestones along the path. I could not have imagined having

a better advisor and mentor for my study. I would like to thank my committee members,

Dr. Albert Reynolds, and Dr. Mohammad Shahvali. You are exceptional lecturers, and your

classes were a great help for this work.

I would also like to thank my colleagues: Soham Sheth, Walter Poquioma, Abdu-

laziz Al-Qasim, Shahriyar Alkhasli, and Rahman Mustafayev for their moral support and

constructive feedback.

I would like to thank my wife, Irina Miftakhova. She was always there to cheer me up

and stood by me through the good and bad times. I extend my thanks to my parents, Fanis

Miftakhov and Gulisa Miftakhova for all of the sacrifices that they have made on my behalf.

This work was possible with the financial support from the Republic of Tatarstan Higher

Education Fellowship “Algarysh” and FUture Reservoir Simulation Systems and Technology

research consortium, The University of Tulsa.

vi

TABLE OF CONTENTS

COPYRIGHT . iii

ABSTRACT . iv

ACKNOWLEDGEMENTS . vi

TABLE OF CONTENTS . viii

LIST OF TABLES . ix

LIST OF FIGURES . xii

CHAPTER 1: INTRODUCTION 1
1.1 Implicit timestepping in reservoir simulation 2

1.1.1 Accuracy of the temporal discretization 3
1.1.2 Newton-like solution methods . 4

Safegurading strategies: . 6
1.1.3 Timestep size selection . 7

1.2 Motivation for the Continuation-Newton(CN) 9
1.2.1 High level hypothetical example . 9
1.2.2 Review of a previous work . 11

1.3 The objectives of this work . 18

CHAPTER 2: TANGENT LINE INVESTIGATION 20
2.1 Solution path parameterization . 21
2.2 Higher order predictor . 23

2.2.1 Higher order predictor: the arc-length parameterization 24
2.2.2 Higher order predictor: the timestep size parameterization 25
2.2.3 Higher order predictor: 1-cell simulation case 26
2.2.4 Higher order predictor: 1D simulation case 28

2.3 The level of Implicitness . 29
2.3.1 The level of Implicitness: Comparison 33

CHAPTER 3: ROBUST STEPLENGTH SELECTION 38
3.1 Stage 1: the steplength relation with an error 39
3.2 Stage 2: the relation of a steplength and an iteration number . . . 43

3.2.1 Classical approach . 43

vii

3.2.2 Error model validation . 46
3.2.3 Reservoir Simulation Error Behavior 54

3.3 Conclusion . 58

CHAPTER 4: SIMULATION EXAMPLES 60
4.1 The three phase compressible flow . 60
4.2 Algorithm . 62
4.3 Results . 65

4.3.1 One timestep simulation . 69
4.3.2 Full simulation . 69

CHAPTER 5: DISCUSSION AND FUTURE WORK 76

BIBLIOGRAPHY . 78

APPENDIX A: RESERVOIR SIMULATOR VALIDATION 80

viii

LIST OF TABLES

2.1 The one cell simulation results . 27

ix

LIST OF FIGURES

1.1 Safeguards methods . 7

1.2 One Cell Buckley-Leverett problem. 10

1.3 Iterative sequence: (a), (b) - Standard Newton, (c) - CN. 12

1.4 Solution path: (a) - 3D, (b) - 2D representation. 13

1.5 The change of independent parameters along the solution path λ: (a) - ∆t,

(b) - U . 13

1.6 Representation of the prediction step in CN algorithm. 13

1.7 Illustration the proposed Continuation-Newton algorithm. 17

1.8 Flow chart of the proposed Continuation-Newton algorithm. 17

2.1 Different orders of approximation for the predictor: (1) - zero order, (2) - first

order, (3) - second order . 27

2.2 One timestep simulation performance comparison 29

2.3 Explicit predictor . 31

2.4 Implicit-like predictor . 31

2.5 Explicit predictor test. 35

2.6 Semi-Implicit predictor test. 35

2.7 Explicit predictor results for the three cases: (a) - ∆t = 0.005 days, (b) -

∆t = 0.0005 days, (c) - ∆t = 0.000005 days 36

2.8 Semi-Implicit predictor results for the three cases: (a) - ∆t = 5.0 days, (b) -

∆t = 0.0005 days, (c) - ∆t = 0.000005 days 37

3.1 Illustration of the local parameterization . 40

3.2 The overview of the steplength selection procedure 40

x

3.3 The relation of the previous and the future error 46

3.4 Validation of the first error model for the four cases: (a) - ∆t = 0.05 days,

(b) - ∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days 48

3.5 Validation of the second error model for the four cases: (a) - ∆t = 0.05 days,

(b) - ∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days 49

3.6 The superlinear model validation for the four cases: (a) - ∆t = 0.05 days, (b)

- ∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days 51

3.7 Exponential model validation for the four cases: (a) - ∆t = 0.05 days, (b) -

∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days 53

3.8 Reservoir Simulation error decay . 55

3.9 Logistic Function: B dependency . 56

3.10 Logistic Function: M dependency . 56

3.11 The logistic function model validation for the four cases: (a) - ∆t = 0.05 days,

(b) - ∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days 57

4.1 Flow chart of the proposed MCN. 66

4.2 Illustration of the MCN algorithm . 67

4.3 The parameters distribution for the first layer 68

4.4 The full simulation as one timestep size . 70

4.5 First case: the full simulation for 1000 days. 72

4.6 Second case: the full simulation for 1000 days. 72

4.7 First case: standard Newton timestep reduction. 73

4.8 Second case: standard Newton timestep reduction. 73

4.9 First case: the variables distribution after 1000 days. 74

4.10 Second case: the variables distribution after 1000 days. 75

A.1 The relative error for the pressure variable. 81

A.2 The relative error for the oil saturation variable. 81

A.3 An example of the oil saturation variable distribution: (a) - Eclipse, (b) - C++. 82

xi

A.4 Performance comparison: (a) - Total number of Newton’s iteration versus

simulation time, (b) - number of Newton’s iterations at each timestep. 83

xii

CHAPTER 1

INTRODUCTION

Reservoir simulation is routinely used within reservoir management activities such as

the design, forecasting, and optimization of oil and gas production operations. Simulation

in these contexts, involves the solution of numerical approximations to the highly nonlinear

and coupled systems of Partial Differential Algebraic Equations (PDAEs) that govern flow

and transport within the subsurface as well as the connected wells and surface facilities.

There are numerous classic and recent introductions to the governing equations, prevalent

numerical approximations, and solution procedures that are used in reservoir simulation; see

for example [2, 6, 3].

Generally, the reservoir simulation governing equations are systems of coupled, non-

linear, and time-dependent advection-reaction-diffusion equations with spatially varying co-

efficients. Wells are typically the driving forces behind the temporal evolution, and they

are often modeled by nonlinear source terms. Additionally, a number of nonlinear algebraic

constraints may be coupled to the system in order to model implicit constraints such as

phase behavior.

In terms of numerical approximations, the spatial discretizations that are typically

used are either finite-volume or finite-element methods. Owing to the dramatically varying

levels in the underlying heterogeneity and local wave speeds, and to the coupled parabolic

wave propagation, temporal discretizations invariably involve some degree of implicitness. A

typical discretization is the Fully-Implicit Method (FIM) that is a low-order backward Euler

discretization that is fully coupled. In practice, less popular alternatives to FIM include

an Implicit Explicit (IMEX) splitting that is referred to as the Implicit Pressure Explicit

Saturation (IMPES) method, as well as the Adaptive Implicit Method that dynamically and

1

locally switches between FIM and IMPES. Ultimately, due to the severe levels of nonlinear

coupling and stiffness that are present, implicit methods are a staple of reservoir simulation.

While FIM offers unconditional stability in terms of the temporal discretization, the

method requires the solution of a large coupled nonlinear system of residual equations in

order to advance each timestep. To solve these nonlinear algebraic systems, Newton-like

iterative solution processes are the method of choice. Generally, Newton-like methods are

not guaranteed to converge, and even their safeguarded variants may converge too slowly.

Subsequently, convergence considerations are necessary when timestep sizes are selected.

Since, to date, there is no a priori characterization of convergence as a function of timestep

size, a try-adapt-try-again strategy is on order. That is, a posteriori logic must be applied

where timestep size is selected iteratively. This strategy is computationally wasteful.

A recent advance proposed the application of a numerical continuation solution pro-

cess, where the continuation parameter is tied to the timestep size [13]. In the proposed

iterative approach, each iterate consists of a state and timestep size pair. The nonlin-

ear solution process produces pairs that are approximate solutions to successively growing

timestep sizes. While promising, there remain several opportunities to enhance the method’s

computational performance. This thesis advances the numerical continuation approach and

demonstrates it applicability to general reservoir simulation.

This chapter, reviews the current state-of-the-art in implicit timestepping and outlines

the current challenges. This is followed by a review of numerical continuation methods, and

their application to implicit timestepping. Finally, the objectives of this work are stated.

1.1 Implicit timestepping in reservoir simulation

The reservoir simulation PDAEs govern the evolution of a set of state variables,

u (x, t) : R3 × R+ → Rneq , that are defined over the spatial domain x ∈ Ω ⊂ R3 and time,

t ≥ 0. The PDAE residual equations are of the form,

Ri (u) =
∂Ai (u)

∂t
+ Fi

(
u, Du, D2u

)
, i = 1, . . . , neq.

2

Numerical approximations of the PDAE residual equations introduce a discrete spatial do-

main that is denoted Ωh ∈ Rnh , and a discrete temporal domain that is defined by the

sequence,

tk+1 = tk + δkt , k = 0, 1, . . . ,

where δkt is a timestep size. Timestepping is the process of generating the sequence of

numerical approximations, Uk ∈ Rneq .nh , starting from the known initial condition U0. Over

a timestep, the approximation is obtained by solving the discrete system of nonlinear residual

equations,

R
(
Uk+1;Uk, δkt

)
= A

(
Uk+1

)
− A

(
Uk
)

+ δkt F
(
Uk+1

)
= 0, k = 0, 1,

Next, the current-state-of-the art of three key aspects of implicit timestepping are

reviewed. The first aspect concerns the accuracy of the approximation as well as character-

izations of the asymtpotic relation between accuracy and timestep size. The second aspect

is the nonlinear solution process that is used to solve the residual system at each timestep.

Newton-like methods are the universal choice in modern reservoir simulation. Finally, the

timestep size selection process is developed.

1.1.1 Accuracy of the temporal discretization

The discrete independent state variable, Uk ∈ Rneq .nh is ultimately an accurate ap-

proximation to the exact state variables up to a global approximation error;

εkglobal ≡ ‖Uk − u
(
x, tk

)
‖, x ∈ Ωh, andk ≥ 0.

The global error can be decomposed into a portion that is due to the spatial discretization

and one that is due to the temporal discretization. In this work, we will neglect the spatial

discretization error, and we assume that the spatial mesh is fully resolved. This allows us

to consider only effects due to the time truncation errors. Reliable a priori estimates for

3

the global and local approximation errors are not available for general nonlinear problems.

Rather, estimates based on extrapolation are commonly used in practice. In the reservoir

simulation context, the local rate of change of the state variables is used as a measure of the

anticipated local error that will be accumulated in an upcoming timestep; for example [8, 9].

1.1.2 Newton-like solution methods

Newton’s method is the predominant solution procedure that is used to solve the

nonlinear residual system over a reservoir simulation timestep. At a particular timestep,

k ≥ 0, the old state, Uk, and the target timestep size, δkt , are determined, and the objective

is to solve,

R
(
Uk+1;Uk, δkt

)
= 0. (1.1)

For notational convenience, we will drop the fixed parameters throughout a timestep solution

sequence; for example, R
(
Uk+1

)
≡ R

(
Uk+1;Uk, δkt

)
. Newton’s method generates a sequence

of iterates,
[
Uk+1

]n
, n = 0, 1, . . ., starting from the zeroth-order predictor of the solution,

[
Uk+1

]0
= Uk.

The sequence is generated by computing linear updates, δn, as,

δn = −J−1
([
Uk+1

]n)
R
([
Uk+1

]n)
,[

Uk+1
]n+1

=
[
Uk+1

]n
+ δn,

(1.2)

where J is the Jacobian matrix of the residual system. The key computational kernel of this

process is the computation of the Newton updates. A secondary, and sometimes overlooked

computational expense is in the evaluation of the Jacobian matrix and the residual system

itself. Inexact Newton Methods apply inexact and typically iterative methods such as pre-

conditioned Krylov acceleration in order to compute the linear updates. Inexact methods are

particularily suitable for large-scale simulation where the exact solution of the linear system

is prohibitively demanding. Modified Newton methods aim to reduce computational expense

4

by replacing the Jacobian with an approximation to it that is easier to compute and invert.

Modified Newton methods such as the rank-one update due to Broyden are known to reduce

the convergence rate of the iteration. Because of the levels of nonlinearity involved, and the

associated difficulties in producing suitable substitutes for the Jacobian matrix, reservoir

simulation timestepping typically uses accurate evaluations of the Jacobian matrix.

Equation 1.2 shows that the solution to the timestep is clearly a fixed point. Moreover,

it is easy to show that the fixed point is also attractive. In floating point computation,

the iteration is seldom carried through to the attractive fixed point. Rather, a collection of

convergence criteria are applied in practice in order to terminate the iteration at a point that

is deemed close enough. Broadly, three measures of convergence criteria may be employed.

Residual measures such as,

‖R
([
Uk+1

]n) ‖ ≤ τr,

can be computed directly. For ill-conditioned problems, they may be misleading however.

Error measures on the other hand are not available since the analytic solution is not known;

‖
[
Uk+1

]n − Uk+1‖ ≤ τe.

Numerous estimates have been proposed in practice and these are domain specific (see for

example the normalized saturations in [9, pp 388-391]). The third type of estimate, exploits

the fact that the solution is an attractive fixed point of the iteration in order to measure

proximity to the solution,

‖
[
Uk+1

]n+1 −
[
Uk+1

]n ‖ ≤ τd.

For a fixed set of convergence tolerances, the number of iterations to convergence is strongly

dependent on the initial state and the target timestep size; N
(
Uk, δkt

)
. Moreover, in general,

the convergence of Newton’s method is not guaranteed.

Numerous safeguarding methods apply damping strategies in order to increase the chances

of convergence.

5

Safegurading strategies: All safeguarded Newton variants are essentially based on

specifying the diagonal matrix ∆v of the explicit Newton flow formulation (1.3), where such

matrix can be viewed as a local stepping,

∂U

∂v
= −∆vJ−1R([Un+1]v;Un,∆t) (1.3)

Standard Newton makes all the diagonal weights to be unity. However, in the case of complex

physics some components experience rapid changes, while others might evolve slowly. In

such cases, uniform damping might lead to an unstable behavior of the explicit Newton flow

formulation, and produces a divergent iteration.

There are two groups of safeguards: Classical safeguards are mathematically derived

approaches from theoretical considerations. Heuristic safeguards on the other hand are

derived based on some particular environment and have a narrow applicability. (Figure 1.1)

The classical safeguards are general and could be applied to any problem. The line-

search and trust region are typical representatives within this group. The principle they

follow is to modify the diagonal matrix uniformly such that when applied to the update,

they do not change its direction. Rather, they try to find an appropriate scaling factor for

the whole matrix. The choice of scaling factor is dictated by the rate of change in the residual

equation along the Newton direction [13].

The heuristic approaches are widely used, but they have limited applicability to those

problems for which they have been derived. For instance, the Modified Appleyard Chop

(MAC) is designed specifically for two phase flow problems. The heuristic based safeguards

employ a principle of cell-by-cell scaling factors. Hence, they result with different entries in

the diagonal matrix ∆v for distinct physics taking place in the subsurface flow. The funda-

mental basis is to restrict a rapid change of the unknowns in sensitive physical regions.

The following is a list of common heuristic safeguards:

• Modified Appleyard Chop (MAC): Implementation is applies to saturations only. On

6

Figure 1.1: Safeguards methods

a cell-by-cell basis, damping factors are selected to ensure that the update is no larger

than 0.2, and that changes from immobile to mobile are restricted to barely mobile.

• Trust-regions for two-phase flow flux functions [12]: The flux function is divided into

saturation trust-regions by defining the inflection, unit-flux, and end points. The

Newton updates are guided in such a way that two successive iterations can not cross

any of trust regions.

These cell-by-cell strategies perform well in practice and they secure convergence in the

critical regions of a fractional flow curve.

1.1.3 Timestep size selection

At a any given timestep, k ≥ 0, the old state, Uk is at hand, and the objective

is to select a timestep size, δkt > 0 by which to advance time. There are four important

considerations to account for:

1. The temporal discretization error and the corresponding accuracy of the approximation

are strong functions of timestep size. The FIM is associated with a first-order local

error; i.e. ‖ek
(
δkt ;Uk

)
‖ ∈ O

(
δkt
)
.

7

2. Discrete events such as the end of the simulation time, or sharp changes in the forcing

terms via the well controls, may occur. Subsequently, for the solution to be accurate,

it is necessary to select timesteps that do not cross the next upcoming discrete event;

i.e. tk + δkt ≤ tevent.

3. Computational efficiency is directly related to timestep size. Generally, the iterative

nonlinear solution process that is applied to solve the timestep may require more iter-

ations to converge for larger timestep sizes. This relation for the number of iterations

to convergence, while difficult to characterize, may be expressed as L
(
δkt ;Uk

)
. Assum-

ing that all nonlinear iterations require the same amount of computational effort, a

measure of computational efficiency is the ratio
δkt

L(δkt ;Uk)
.

4. Finally, the condition of finite termination is critical to all computationally iterative

methods. We must require that L
(
δkt ;Uk

)
≤ Lmax <∞.

If the critical error and convergence relations, ‖ek
(
δkt ;Uk

)
‖ and L

(
δkt ;Uk

)
respectively, are

at hand, then timestep size selection may be performed directly by solving the constrained

minimization problem,

maximize
δkt

δkt
L
(
δkt ;Uk

)
subject to δkt ≥ δmint ,

δkt ≤ tevent − tk,

‖ek
(
δkt ;Uk

)
‖ ≤ εtol,

L
(
δkt ;Uk

)
≤ Lmax.

Unfortunately, for general nonlinear problems, neither error ‖ek
(
δkt ;Uk

)
‖ nor L

(
δkt ;Uk

)
are available a priori. Subsequently, modern timestep size selection algorithms must apply

sometimes crude estimates for these relations, and then proceed to adapt them in a trial

and error fashion. Inherently, this means that modern timestep selection algorithms have no

way of directly optimizing for computational efficiency. Rather, their objective is to simply

obtain a feasible timestep size. Listing 2 provides a generic timestep selection algorithm.

8

Algorithm 1: Try-adapt-try-again timestep selection algorithm

Data: Uk, and tolerance parameters, e.g. Lmax
Result: solution Uk+1 and corresponding timestep size, δkt
Select a trial timestep size;
Try to solve corresponding nonlinear residual;
while nonlinear convergence is too slow or error estimates are too large do

Adapt timestep size using latest convergence rate information;
Try to solve corresponding nonlinear residual;

A specific variant of such as strategy is employed in most commercial simulators. For

example, the Eclipse simulator [10] implements the following approach. At the beginning of

a simulation, Eclipse tries to obtain a solution with an initial timestep size of 1.0 day. If the

solution was successfully obtained, then the timestep size will be increased by the factor of 3.0

(the default). The next timestep would be 3.0 days. For all subsequent successful iterations

the timestep will be scaled upwards, until it reaches the maximum allowed timestep size of

365.0 days (the default). However, when iterates exhibit some convergence problems, then

timestep will be decelerated by the factor of 0.3 (the default). Moreover, if the Newton

iteration fails to converge within a maximum numbers of iterations, the factor of 0.1 (by

default) will be applied. In such cases the factoring up constant will be decreased to 1.25.

1.2 Motivation for the Continuation-Newton(CN)

The key motivation of devising Continuation-Newton algorithms is to find a more ro-

bust nonlinear solver that understands physical changes occurring in a formulation, and that

is able to overcome the shortcomings of Newton’s method. In the CN algorithm, each iterate

is an approximate solution of a particular timestep ∆t which is less than the target timestep

size ∆ttarg. The major assets of the CN-like algorithms are based on the following assertion:

the convergence is always guaranteed, and no timestep chops are necessary anymore.

1.2.1 High level hypothetical example

Consider a hypothetical example of Buckley Leverett displacement (1.4) in 1 cell

9

Figure 1.2: One Cell Buckley-Leverett problem.

(Figure 1.2). The governing equation is,

∂S

∂t
+
∂F
∂x

= 0, (1.4)

where S is the saturation and F is the flux function.

As shown in Figure 1.3, all of the plots are in 3 dimensions. On vertical Z axis is a

residual value (affine contravariance), on X is a timestep size ∆t, and on Y is a saturation

state value S. At the most top plot, the red solid curve represents a known initial saturation

state with the timestep size ∆t = 0, and we wish to acquire the solution at the timestep

target ∆ttarg with the corresponding saturation value Sn+1, transparent curve. It is well

known, the standard Newton takes an old state variable Sinit as an initial guess to the

iterative process. Hence, in the example, after all the iterations it fails to converge (Figure

1.3(a)). The main reason for the failure as was discussed earlier, the standard Newton does

not seize the physics which happens in the reservoir and cannot define pathological regions

of a flux function. Therefore, a big timestep advancement might bring the initial guess far

from the convergence region of the Newton process.

As a result of the failure, a chopping strategy should be applied, which cuts the

timestep, to bring the guess closer to the solution. Therefore, the Newton needs to compute

an intermediate timestep size ∆tcut (Figure 1.3(b)), in order to reach the desired solution at

∆ttarg. Moreover, even by applying of such harsh restriction on timestep advancement, the

convergence sill cannot be guaranteed. According to the hypothetical example, the formu-

10

lation is finally converged, but it involved a significant waste of computational resources.

Motivated by overcoming the flows of standard Newton’s method, Rami Younis in

his work [13] proposed to make use of Continuation-Newton, which is applied directly on

the timestep size ∆t. The high level picture of the derived algorithm is on Figure 1.3(c).

The proposed strategy will not use the guess as an old state variable(as it was done in the

case of the standard Newton), but it would perform a prediction of a state variable change

towards the solution, then it will use a new predicted point as the guess. The CN algorithm

understands the variable change direction, and by getting the guess closer to the solution it

avoids unnecessary timestep chopping, therefore, secure the convergence.

1.2.2 Review of a previous work

The Continuation methods have been used for a long time by scientists and engi-

neers, especially when a good initial guess was not available. The CN implementation in a

subsurface flow simulation domain was recently derived, and published by Younis in SPE-

119147-MS paper ”Adaptively Localized Continuation-Newton Method - Nonlinear Solvers

That Converge All the Time”. It claims that developed CN solver allows a stable advance-

ment in time without worrying about the timestep chops. [1]

Generally, the solution of PDE is obtained when a pair of an unknown state and corre-

sponding timestep size, forces the residual equation R(Un+1;Un,∆t) go to a zero value. The

main task of CN algorithm is to numerically trace the zero residual level curve Equation

(1.5), which is a solution path. It can be done by parameterizing the residual equation with

respect to some parameter as in Equation (1.6)). For instance, Younis in his paper suggested

to use the arc-length λ parameterization.

R(U(λ),∆t(λ)) = 0. (1.5)

Following from the PDE theory, at every discrete timestep size ∆t > 0, there exists

at least one unique solution Un+1, bifurcation points are not considered here to eliminate

complicated hypotheses which are not intrinsically important for our discussion. Assuming

11

Figure 1.3: Iterative sequence: (a), (b) - Standard Newton, (c) - CN.

12

Figure 1.4: Solution path: (a) - 3D, (b) - 2D representation.

Figure 1.5: The change of independent parameters along the solution path λ: (a) - ∆t, (b)
- U .

Figure 1.6: Representation of the prediction step in CN algorithm.

13

that several couples of such unknowns are already computed, those points make the residual

equation satisfy the chosen tolerance criterion ‖R‖ ≤ ε. It is possible to connect all these

discrete points(supplied with the starting point R(U0) = 0) with a curve which will result

in a solution path of underlying formulation(Figure 1.4(a)). A solution path is a continuous

curve which lies on zero residual level plane(Figure 1.4(b)), each point on this curve defines

a pair of unknown (U(λ),∆t(λ)).

The solution path can be computed for any PDE because it is irrelevant to modeled

physics. The only difference it would bring is a deformation of a shape of the solution path.

As stated in the paper, the residual equation needs to be parameterized with respect to the

arc-length λ parameter. Therefore, all the variables involved in the formulation have to be

considered to be depended on λ, then the total derivative can be written as follows:

dR

dλ
=
∂R

∂U

dU

dλ
+

∂R

∂∆t

∆t

dλ
= J

dU

dλ
+

∂R

∂∆t

∆t

dλ
= 0, (1.6)

rank(J(λ(α))) = N, ∀α ∈ Ω, (1.7)

where dR
dλ

is an N by N + 1 system; dU
dλ

and ∆t
dλ

represent a change in a state variable and a

timestep size along the solution path accordingly; α is a steplength along the overall tangent

line.

The derived system (1.6) results in N equations and N + 1 unknowns, which requires

either some constitutive relationship or constraint to complete the system of a square matrix.

One of the options is to impose a unit tangent condition,
∥∥dU
dλ
, d∆t
dλ

∥∥ = 1. The other possible

way is to force some physical inequality. It is known that there is a unique solution to each

timestep size, and we can force the solution path following the uniqueness criterion. For this

reason, the change of a timestep size with respect to arc-length has to follow a restricted

variation. As a result, the inequality d∆t
dλ

> C has been imposed , where the positive constant

C is chosen arbitrary small. Therefore, the change of ∆t along the arc-length on the solution

path would be bounded above zero, and monotonically increasing at all points (Figure 1.5

14

(a)). Otherwise, the uniqueness of a solution would be violated. On the other hand, the

change in the unknown state variable is not bounded with any constraint (Figure 1.5 (b))

[14]. As a result, the following system can be written:

J ∂R
∂∆t

0 1

dUdλ

∆t
dλ

 =

0

C

 , (1.8)

where J is a Jacobian [N by N] matrix, the same as the one used for standard Newton’s

method, the elements of J are defined as J(i,j) =
dR(i)

dU(j)
, ∂R
∂∆t

represents an N dimensional

vector of a residual equations change with respect to a timestep size. The system of N + 1

equation and N + 1 unknown is completed, and it can be solved simultaneously to obtain

the change in the state variable dU
d∆t

(1.8). Note, this system of equation is always solvable

because Jacobian itself is well defined and invertible.

The final step is to define a tangent line equation, which emanates from an origin, as

follows:

dU

dλ
= δ ← C(−J−1 ∂R

∂∆t
). (1.9)

Based on known initial state variables (Un,∆tn), which bring a residual equation to

the zero level, it is possible to compute tangent lines to all state variables (1.9). More-

over, the first order Euler predictor is employed which takes the tangent values as well as a

steplength α along it, and advances the initial state.(1.10)

∆tpred = ∆tn + α
∆t

dλ
, Upred = Un + α

dU

dλ
, (1.10)

where ∆tpred and Upred is a predicted(expected) change in variables, those predictions will

supply an initial guess for the iterative solver.

A big concern for all Continuation-Newton like methods is how to define the steplength

α along the tangent line, which is able to directly influence the performance of CN algorithm.

The importance of the right choice might be viewed on Figure 1.6. It is a result of the fun-

15

damental limitation of a linear first order Euler predictor, which accurately predicts the

changes in the vicinity of its origin [Un,∆tn]. The prediction is reliable when a sufficiently

small steplength α selected to stay within a safe region. In other words, there is some thresh-

old proximity region to the solution path, and those predicted points which are inside the

region are most likely to be good predictions. In contrast, the prediction for faraway points

might lead to a divergent iterative sequence.

In the SPE paper an algorithm to compute the steplength based on residual evalu-

ations, where so-called the convergence neighborhood is implemented. The algorithm rep-

resents quantitative measures of the predicted point proximity to the solution path. The

obtained measurements directly define the future steplength. A small tolerance region along

the solution path is taken as the convergence neighborhood (Figure 1.7). Those points inside

the neighborhood s(U,∆t) ∈ N , ‖R(s)‖ ≤ εtol are assumed to be close enough to the solu-

tion path, and they would exhibit a rapid convergence to the solution; whereas, those points

outside of the neighborhood are assumed to be bad predictions. The choice of a tolerance

proximity is motivated by a local quadratic convergence of the standard Newton’s method,

which is suggested to take as one or two order in magnitude looser than required to judge if

an iterate is an acceptable solution.

Here are presented the flow chart(Figure 1.8) as well as the graphical representation

(Figure 1.7) of the proposed algorithm. As follows from Figure 1.7, the tangent line from an

initial state is computed, then the algorithm needs to select the steplength along the tangent

line which is based on backtracking iteration in order to find such steplength to remain in the

convergence neighborhood. At each backtracking iteration the system of residual equations

has to be evaluated. If such steplength was found, which falls within the neighborhood

region, then the next tangent line would be computed and the steplength selection routine

will be invoked again. However, at the time when backtracking iterations results with none

steplength α possible in order to remain in the region, some of the Newton corrector iteration

needs to be performed to bring the guess closer to the solution path. The algorithm would

repeat all those discrete operations until the target timestep size criterion is met.

16

Figure 1.7: Illustration the proposed Continuation-Newton algorithm.

Figure 1.8: Flow chart of the proposed Continuation-Newton algorithm.

17

1.3 The objectives of this work

The main purpose of the following, is to state the shortcomings of the earlier proposed

algorithm and offer some possible solutions. There are several major drawbacks:

1. The convergence neighborhood along the solution path is devised to define a heuristi-

cally based local convergence (contraction) region for the corrector process, essentially

it represents a zone of small residual proximity (neighborhood tolerance). Those pre-

dicted points which fall in such neighborhood are assume to be ”close enough” to the

solution and will exhibit a rapid convergence. On the other hand, those points which

are outside of the region assume to be bad predictions. The detection whenever the

predicted point is in the convergence region or not, is implemented by an evaluation of

the residual norm. Moreover, a user must supply a convergence neighborhood tolerance

criterion around the solution path for various simulation cases. There is not enough

theory-based explanation to claim such strategy will be successful at all times.

2. The vector of residual equations has to be evaluated at each backtracking iteration in

order to select a suitable steplength along the tangent line. The associated computa-

tional deficiency of the algorithm is in such evaluations. For instance, in a composi-

tional flow simulation, it needs to perform not only the routine operations, but also a

flash calculation to compose the vector of residual equations.

3. The proposed steplength strategy, which is solely based on the residual evaluation, can-

not result neither in an efficient timestep advancement nor an optimal computation,

because the norm of the residual equation at most of the time has nothing to do with

guaranteeing the convergence. Furthermore, strictly bounding the residual variation

with the steplength selection will always result in an inefficient timestepping strategy

and wasteful computations.

With this in mind, I will address to the stated drawbacks and will tackle them in the following

order:

18

1. An investigation of possible improvements in the tangent line computations, where the

main questions of preferred parameterization parameters, higher order predictors, and

stability issues will be covered in the following chapter.

2. The next portion of the work will be focused on a robust steplength selection method,

which will not be based on the convergence neighborhood. It will automatically select

the steplength based on the convergence history of the previously computed timestep.

The proposed steplength selection algorithm can be divided into two stages: At the

first stage, needs to acquire the relation between the steplength of the future tangent

with an introduced error ε̃0(α̃), derivation based on Taylor series expansion. At the

second stage, needs to find an appropriate error model, which could mimic the error

decay from the previous timestep. Such model will give leverage in deriving the relation

of the future initial error and the numbers of iteration it will take to converge ε̃0(Ñ).

The combination of these two stages, gives us the possibility to adjust the steplength

with the specified desired number of iterations. For instance, if a user wants to have

only five iteration throughout a simulation run, the algorithm will give the steplength

which will reach that.

19

CHAPTER 2

TANGENT LINE INVESTIGATION

The primary discussion in this chapter will be focused on various tangent line improve-

ments based on theoretical and also practical grounds. A tangent line is an essential kernel

of Continuation-Newton like methods, which gives the rate of change for state unknowns

with respect to a single parameter, and basically it represents the first order approximation

out of an infinite Taylor series expansion of a continuous solution path.

1. As shown earlier, the tangent line was computed with respect to an outside parameter

as the arc-length λ of the solution path. However, there are many other parameters

with respect to which the tangent line could be computed and it might result in a

reduced form of ODE to solve.

2. The Continuation-Newton theory suggests to use as the most efficient, the first order

Euler predictor. It is obtained by throwing out all the term higher than linear from

an infinite Taylor series expansion of the solution path, which might result with a

poor prediction accuracy compare to higher orders. The first order tangent carries

an information such as a rate of change of the unknown state with respect to some

parameter, but the higher order terms might reveal the information of a curvature.

Therefore, it might gives us a considerable gain in terms of accuracy.

The motivation for testing the higher order predictor came from an observation. The

subsurface flow simulators usually encompass two type of equations, such as a parabolic/elliptic-

flow equation and a hyperbolic-transport equation. In the flow equation, the changes

are occurring globally and to perform prediction is an easy task. On the other hand,

the transport equation have a wave propagation-like behavior, where the saturation

20

changes accruing only in a local region (front). Based on the tests the first order pre-

dictor’s capability limited only on one cell. In the other words, the first order predictor

is able to move the saturation front only on one cell forward. This also motivates us to

review higher order terms of the Taylor series expansion, and it is desirable to obtain

a prediction which can span the front propagation in multiple cells.

3. Need to address the issue of the tangent line computation stability. The explicit scheme

offers a good approximation in the close vicinity to the starting point, but it gives

unreliable approximation of a point which is located far from the origin.

In general, fully-implicit schemes provide any formulation with improved stability.

With an intention to develop an implicit-like behavior for the tangent line construction,

the associated cost should be evaluated because any fixed point scheme would require

the performance of some iterations. Since the ODE, which represents the tangent line

equation, needs to invert the system of linear equations in order to be evaluated, the

computational cost has to be closely considered.

2.1 Solution path parameterization

It is important to obtain the most simplified formulation of the tangent line equation

because it would decrease the complexity of the solution procedure. The zero residual level

curve (solution path) can be parameterized with respect to any arbitrary parameter, as well

as the independent unknowns involved in the system. As was mentioned, one of the choices

is to use the arc-length as the parameterization parameter (2.1), which has already been

fully derived in the research work [13]:

R(U(λ),∆t(λ)) = 0, (2.1)

where each of the unknowns U and ∆t are assumed to be dependent on the arc-length λ.

The parameterized equation has the following form:

21

dU

dλ
= −J−1 ∂R

∂∆t

d∆t

dλ
.

Then, in order to advance the state unknown, we need to provide some step length

α along the tangent line:

Upred = Uold + α
dU

dλ
.

A disadvantage of the proposed parameterization that the computation of the arc-

length based tangent line requires the user to supply an additional closure relation d∆t
dλ

to

complete the system of N equations and N + 1 unknowns. The other option is to choose

a parameterization in a way to decrease the number of unknowns in the system. In the

following discussion, the use of more natural parameter as the timestep size ∆t is derived.

Thus, all the unknowns involved in the formulation are assumed to be dependent on

the timestep size ∆t:

R(U(∆t),∆t) = 0. (2.2)

Then, the zero residual level curve is parameterized with respect to ∆t:

dR(U(∆t),∆t)

d∆t
= 0. (2.3)

The total derivative of the residual equation would have the following form:

dR(U(∆t),∆t)

d∆t
=
∂R

∂U

dU

d∆t
+

∂R

∂∆t
= 0,

dU

d∆t
= −(

∂R

∂U
)−1 ∂R

∂∆t
,

dU

d∆t
= −J−1 ∂R

∂∆t
. (2.4)

As provided by Equation (2.4), in order to acquire the tangent line, there is no need

to use some other constraint equations. The derived formulation is self-contained and well

defined. The solution of (2.4) is always attainable, because the Jacobian matrix is assumed

22

to be always invertible. Both the timestep size and the arc-length based parameterization

require only one inverse of a linear system.

In short, the derived timestep parameterization helps to simplify the calculation of

the tangent line, where the system of N equation by N unknowns has to be solved.

2.2 Higher order predictor

The common way to compute the tangent line is to use only the first order term of

the Taylor expansion. The infinite expansion for the arc-length λ based parameterization of

the solution path is written in the following form:

U = U0 + α
dU

dλ
+
α2

2!

d2U

dλ2
+
α3

3!

d3U

dλ3
+
α4

4!

d4U

dλ4
. . . (2.5)

In contrast, the timestep based parameterization is expressed as:

U = U0 + α
dU

d∆t
+
α2

2!

d2U

d∆t2
+
α3

3!

d3U

d∆t3
+
α4

4!

d4U

d∆t4
. . . (2.6)

As was mentioned earlier, the subsurface flow simulators usually incorporate two

type of equations one for parabolic/elliptic flow and one for hyperbolic transport. It is been

observed that for the transport equation, which has a wave propagation-like behavior, the

first order predictor is able to move the saturation front only one cell forward.

The first order term carries information such as a rate of change of an unknown state,

which limits the prediction only on the linear extrapolation. The PDEs involved in the sim-

ulation are highly nonlinear, and it is desirable to implement a higher order approximation,

which might give leverage to the tangent line in spanning along the solution path. Further-

more, it is necessary to compute the second order term, which will provide the predictor

with a parabolic behavior. The obtained accuracy improvement might enforce the overall

tangent line to predict a propagation of the saturation front on several cells.

The two sets of derivations for the second order term are derived, the first for the

arc-length and the second for the timestep size parameterization.

23

2.2.1 Higher order predictor: the arc-length parameterization

The parameterization begin with the definition of the first order residual parameter-

ization:

dR(U(λ),∆t(λ))

dλ
= J

dU

dλ
+

∂R

∂∆t

d∆t

dλ
.

Then, it is necessary to differentiate the above equation once again, with respect to

the arc-length:

d2R(U(λ),∆t(λ))

dλ2
=

d

dλ
[J
dU

dλ
] +

d

dλ
[
∂R

∂∆t

d∆t

dλ
],

where J(U(λ),∆t(λ)) is an N by N Jacobian matrix, which depends on λ. For simplicity of

the further derivation, assume G = ∂R
∂∆t

.

The second order derivative of the zero residual level curve is presented below:

d2R

dλ2
= [

∂J

∂U

dU

dλ
+

∂J

∂∆t

d∆t

dλ
]
dU

dλ
+ J

d2U

dλ2
+ [

∂G
∂U

dU

dλ
+

∂G
∂∆t

d∆t

dλ
]
d∆t

dλ
+ G d

2∆t

dλ2
= 0,

where the above equation needs to be solved for d2U
dλ2

, which represents the second order term

of the Taylor series expansion (2.5):

d2U

dλ2
= −J−1[(

∂J

∂U

dU

dλ
+

∂J

∂∆t

d∆t

dλ
)
dU

dλ
+ G d

2∆t

dλ2
+ (

∂G
∂U

dU

dλ
+

∂G
∂∆t

d∆t

dλ
)
d∆t

dλ
], (2.7)

where ∂J
∂U

is a partial derivative of an N by N Jacobian matrix with respect to the vector

of N unknowns, which results in a tensor matrix. ∂J
∂∆t

is a partial derivative of the Jacobian

with respect to the scalar ∆t. d2U
dλ2

is an N equations by N + 2 unknowns system.

As was mentioned in the previous chapter, in order to obtain the first order tangent

line, the closure equation is needed, and it was taken as d∆t
dλ

> 0. The main challenge of

formulation (2.7) is to find an additional restrictive knowledge of a solution path behavior,

as d2∆t
dλ2

, in order to be able to solve the system for the second order term. Such knowledge

cannot be obtained because the acceleration of a timestep size with respect to arc-length

is defined in a whole real space, so there is no bounds we might enforce. Thus, this leaves

us with the incomplete system (2.7) of N equations and N + 1 unknowns, which might

24

be solved by applying a more complicated and computationally costlier inverse such as the

Moore Penrose pseudoinverse [5].

Finally, we can write a truncated formulation of a predicted point near the solution

path:

Un+1 = Un + α
dU

dλ
+
α2

2!

d2U

dλ2
. (2.8)

2.2.2 Higher order predictor: the timestep size parameterization

In the hope that the computation of the second order term system would be possible,

we consider the equation of the tangent line based on the ∆t parameterization:

dR(U(∆t),∆t)

d∆t
= J

dU

d∆t
+

∂R

∂∆t
.

Taking a second derivative of the above equation with respect to ∆t,

d2R

d∆t2
=

d

d∆t
[J
dU

d∆t
] +

d

d∆t
[
∂R

∂∆t
].

Assume, the Jacobian dependence on ∆t, J(U(∆t),∆t), and assume G = ∂R
∂∆t

. The

second derivative of the residual equation with respect to ∆t is

d2R

d∆t2
= [

∂J

∂U

dU

d∆t
+

∂J

∂∆t
]
dU

d∆t
+ J

d2U

d∆t2
+
∂G
∂U

dU

d∆t
+

∂G
∂∆t

= 0.

The following defines the second order term of the infinite Taylor series expansion

(2.6):

d2U

d∆t2
= −J−1[(

∂J

∂U

dU

d∆t
+

∂J

∂∆t
)
dU

d∆t
+
∂G
∂U

dU

d∆t
+

∂G
∂∆t

]. (2.9)

The calculation of system (2.9) does not require an additional closure equation; it

represents a complete system of N equations and N unknowns. This system can be inverted

by using standard linear algebra routines.

25

Then, the predicted point can be defined as the following:

Un+1 = Un + α
dU

d∆t
+
α2

2!

d2U

d∆t2
. (2.10)

In summary, although it was possible to come up with a constraint equation for the

first order tangent line in the arc-length parameterization, we failed to obtain such constraint

for the second order term. Therefore, it makes the computation impossible to perform.

On the other hand, the timestep size parameterization gives us a more convenient form of

the system, and needs no additional constraints However, the computation of the second

order term requires the tensor to be composed and many tensor-vector multiplications to be

performed.

2.2.3 Higher order predictor: 1-cell simulation case

In order to test the prediction accuracy of different orders of approximation, a simple

1-cell Buckley-Leverett problem is presented in this section, where the governing equation

has the following form:

dS

dt
+
dF (S)

dx
= 0,

where F (S) is a flux function and S is a saturation value in the cell.

The discretized form of the residual equation is

R = Sn+1 − Sn +
∆t

V
[F (Sn+1)− Finj],

where V is a volume of the cell.

The initial saturation is Sinit = S0 = 0.0 (Figure 1.2), and we want to obtain the

solution at ∆t = 0.8. There are 3 predictor types (Figure 2.1): the first is the predictor of a

zero order, which can be viewed as a standard Newton, where the prediction is an old state

variable; the second is the first order tangent, which represents a strait line; the third is the

second order tangent curve, which encompasses an additional paraboloid behavior.

26

Figure 2.1: Different orders of approximation for the predictor: (1) - zero order, (2) - first
order, (3) - second order

Order of approximation Terms Predicted value Error
(1) Zero Order Spred = S0 0.0 -0.6255

(2) First Order Spred = S0 + α dS
d∆t

0.8 0.1745

(2) Second Order Spred = S0 + α dS
d∆t

+ α2

2!
d2S
d∆t2

0.7488 0.1233

Table 2.1: The one cell simulation results

27

NOTE: In all the cases, the steplength α is chosen to be equal to the full timestep

size ∆t = α = 0.8. The converged solution at the prescribed timestep size is Sn+1 = 0.6255.

The results of comparison performance of all three predictor options are in table

(2.1) and on Figure 2.1. As was mentioned, the zero order predictor represents the standard

Newton’s method. It takes the prediction as the old state variable Spred = 0.0, and results

in a big proximity(Error) to the solution; the first order is closer to the solution Spred = 0.8,

but it overshoots the solution on ε0 = 0.1755; The most accurate as we know from the Taylor

series expansion and now from the simulation test is the second order predictor, which results

in Spred = 0.7488 and the error of ε0 = 0.1233.

The accuracy of the second order predictor is justified in this section, but still a

question of computational performance versus gained accuracy needs to be answered since

the computation of the second term requires the performance of one additional inverse of a

linear system and compute many tensor-vector multiplications. The following test will try

to answer that question.

2.2.4 Higher order predictor: 1D simulation case

The test setup is 1D Buckley Leverett problem, the number of gridlocks is Nb = 1000,

and injection is undergoing from the most left face. The current simulation case has no

safeguarding strategies implemented. It will compare the three orders of approximation:

zero order which associated with the standard Newton; CN with the first order ; and CN

with the second order approximation.

The result of the comparison is shown on Figure 2.2, which depicts the relation of the

number of linear iterations versus the timestep size. Each point on the figure represents a full

simulation run as the one timestep. At small timestep sizes, the standard Newton converges

with less number of iterations compare to other two. However, after some threshold it stars

having some trouble to converge. In contrast, CN of the first and the second order, converges

reasonably well throughout the all timestep sizes. Moreover, CN of the second order almost

all the time lies above the first one. The observed deficiency of the second order is because

28

Figure 2.2: One timestep simulation performance comparison

the accuracy improvement don not overweight the cost of the one additional linear inverse.

The small variation in predicted value can not be seized by the Newton iterative process,

under the circumstances of the contraction region being very close to the solution.

The first order approximation will be used in the following discussions as the most

efficient one.

2.3 The level of Implicitness

The stability issue is an important topic for a ”good” tangent line computation. The

explicit scheme is cheap and offers a fairly good approximation only in the close vicinity. In

contrast, Implicit schemes are able to provide an improved stability for faraway points, but

it might come at a considerable expense.

The main reason for searching more stable solution of the tangent computation is to

have a bounded error along the tangent line. Presumably, the explicit tangent is not able to

provide with a good tangent line direction, which would lead to a significant error growth.

29

However, it assumed that even a slightly introduced implicitness to the formulation would

improve the tangent direction, which will have an improved error behavior.

In this section, we will investigate how the choice of a pair of unknowns [Un+1,∆t]

affects the tangent line as well as the overall performance of the CN algorithm.

First, the standard way of selecting the pair of unknowns is to take them as an

old values (Un+1 = Uold; ∆t = ∆told) , then the tangent will be emanating from its origin

point [Uold,∆told] on the solution path. Moreover, it is might be viewed as an explicit based

approach, where the prediction capability is limited in a close area from the origin.

For the current choice of unknowns assume Un+1 = Uold.

dU

d∆t
= −J−1(Un+1, Uold,∆tn)

∂R(Un+1, Uold,∆tn)

∂∆t
. (2.11)

As shown on Figure 2.3, even for a simple case of a parabolic function the first order

predictor results with a bad extrapolation. The tangent line emanated from the origin (U0, 0),

which brought the predicted point faraway from the solution. Please note here, the standard

Newton’s initial guess is a lot more closer to the solution at the target timestep size (Figure

2.3). If we were to take the predicted point as a guess for the Newton iterative process,

it most probably will spend a lot of iterations to converge or might even diverge. There is

no way to take a big enough steplength α and remain in the convergence region with the

explicitly defined tangent line.

Second, consider if we would be able to take the tangent line at the point where the

solution is being searched (Un+1,∆ttarg). Certainly, it would bring many benefits in bounding

the error from infinite growing. However, such stability remedy could be reached only by

introducing some sort of implicitness to the formulation. If one of the future unknown state

or the timestep is known a prior, then it might be used to obtain an improved tangent line,

which would help to get the other unknown by use of some Fixed Point like iteration schemes

(Figure 2.4).

Assume, the timestep where we want to get a solution is known. The pair of unknowns

30

Figure 2.3: Explicit predictor

Figure 2.4: Implicit-like predictor

31

would have the form [Un+1 = Uold,∆t
n+1 = ∆ttarg]. The tangent line equation can be

expressed as

dU

d∆t
= −J−1(Un+1, Uold,∆tn+1)

∂R(Un+1, Uold,∆tn+1)

∂∆t
, (2.12)

where ∆tn+1 is the future timestep size at the solution, which we want to obtain.

Then, the tangent line could be used to advance the state variables:

Un+1 = Un + α
dU

d∆t
,

where α is the target timestep size divided by the number of fixed point iterations α = ∆t
N

.

Algorithm 2: Fixed point iteration algorithm

Data: Uold, the target timestep size ∆ttarg, and the number of iterations N ;
Result: predicted point Ũn+1;
Compute the steplength α = ∆t

N

while the iterations less than prescribed N do
Obtain the tangent line solution, dU

d∆t

Advance the state unknowns, Un+1

The final predicted point would be: Ũn+1 = Un+1

Equation (2.12) and the update of the state variables can be repeated until the de-

sired accuracy or maximum iterations bounds are met. Obviously, increasing the number of

iterations will eventually lead to a more accurate and reliable tangent line solution.

On Figure 2.4 shown, a hypothetical example of the quadratic function and the tan-

gent line that we wish to obtain. NOTE: The figure does not represent a sequence of

fixed point iterations, only one evaluation of the algorithm 2 has been performed with the

steplength α = ∆ttarg. In this case, the tangent line emanated from the origin is not an exact

tangent as at the solution point, but a result of the first approximation (iteration). Even

from the figure we can see, the improved stability of the tangent line construction. The error

between the predicted point and the solution decreased dramatically. The induced error by

the scheme is always less than from explicit tangent line. All of these motivates us to take

even bigger steplength along the tangent line and still be withing the error bounds.

32

In summary, we have devised a new way to compute a more stable tangent line

compare to the original (explicit) one. The simulation comparison will be discussed in the

next section.

2.3.1 The level of Implicitness: Comparison

In order to understand the ability of each tangent line formulation accurately predict

the future occurring changes. The two phase subsurface flow simulator with SPE10 com-

parative study grid model is proposed to be used as the test case. In order to decrease the

computational intensity only the first 2 layers in Z-direction were taken from the full SPE10,

which results in an overall grid dimension of 60 × 220 × 2. Six production wells as well as

two injection wells were located on 5-spot inverted pattern. All the supplementary physics

are included: capillarity, and gravity effects.

Here will be a comparison performance of the explicit and the semi-implicit based

tangent line formulations. The explicit based tangent test is done by the following procedure:

first, compute the tangent at the origin point (Un+1 = Uold,∆t = 0.0), then advance the state

variables by using different steplengths. The tested steplengths (α1, α2, α3) were selected in

such a way, to allow the Newton iterative process to obtain the solution starting with the

predicted point Ũn+1 at a particular timestep size. As it shown on Figure 2.5, the steplength

range varies from 0.000005 ≤ α ≤ 0.005 and if it increases the upper bound, the formulation

does not converge.

The results at each steplength are presented on Figure 2.7. The left part of the

figure is dedicated for the pressure and on the other half for the saturation unknown. There

are three curves on the figure: the green is initial Un = Uold; the blue is predicted Ũn+1;

the red is the converge variables distribution Un+1. The horizontal axis represents the grid

dimension. As was expected, a good identification of the changes and the scaling with a

very tiny steplength α = 0.000005. However, as the steplength keeps increasing the profile of

changes stays the same, only the magnitude differs. That is the main reason of the prediction

deficiency for point faraway from the origin.

33

The semi-implicit tangent test was implemented in the following order: first, compute

the tangent line at the point where the solution is being searched (Un+1 = Uold,∆t = ∆tn+1 =

α). Keeping in mind the associated cost of the fixed point iteration and in order to have

a compatible computational cost with explicit tangent construction, only one iteration of

algorithm 2 was computed. Moreover, the chosen steplengths are in the range of 0.000005 ≤

α ≤ 5.0, which implies that the semi-implicit tangent line could obtain the solution with a

bigger steplength (Figure 2.6).

The simulation based results are shown on Figure 2.8. We should note here, the semi-

implicit tangent line has a good prediction accuracy for the small steplength α = 0.000005

as the explicit based. Moreover, with the increasing of the steplength the formulation results

with a good predictions for the pressure variable, but still straggles to accurately predict the

changes in the saturation.

The question of level of implicitness has to be investigated in more details. However,

the results are very optimistic and no doubt, it has a good perspective for the future work.

34

Figure 2.5: Explicit predictor test.

Figure 2.6: Semi-Implicit predictor test.

35

Figure 2.7: Explicit predictor results for the three cases: (a) - ∆t = 0.005 days, (b) -
∆t = 0.0005 days, (c) - ∆t = 0.000005 days

36

Figure 2.8: Semi-Implicit predictor results for the three cases: (a) - ∆t = 5.0 days, (b) -
∆t = 0.0005 days, (c) - ∆t = 0.000005 days

37

CHAPTER 3

ROBUST STEPLENGTH SELECTION

The major challenge with Continuation-Newton like methods is the selection of a

steplength along the continuation tangent line. For instance, when steplength is taken smaller

than subsequent formulation requires, CN will follow the solution path unnecessary closely;

on the other hand, if the steplength is chosen bigger when it might take many iterations

to converge or even eventually diverge. Poorly chosen steplength will lead to a significant

computational waste.

There are many different approaches to define the steplength: adaptation by asymp-

totic expansion; strategies involving variable order predictors based on a prior estimation of

convergence radii; convergence neighborhood which was already used in reservoir simulation

problems; etc.

The proposed algorithm here, is able to automatically select the steplength based on

an error decay information of the previous timestep. Therefore, having the previous timestep

information of the error decay throughout the iterations with the corresponding steplength

α, enables to predict a future steplength of the next tangent line. The algorithm can only

be used when the corrector step may be viewed as an iterative procedure.

The proposed steplength selection algorithm can be divided into two stages:

The first stage, from the Taylor series representation of the solution path, need to derive the

relation between the steplength α̃ on the future tangent line with a growing error ε̃ along it.

The second stage, need to acquire an appropriate error model which could mimic the error

decay of the previous timestep. The obtained model will give leverage in deriving the relation

of the future initial error ε̃0 and the number of iterations it will take to converge N .

Combination of these two stages gives us the ability to adjust the steplength with

38

a desired numbers of iterations k̃. In other words, the desired numbers of iteration will

be a guidance for the steplength selection strategy which is adapted to meet the iteration

requirement. For instance, if a user wants to have only five iteration throughout a simulation

run, the algorithm will provide the steplength which will guarantee that. This derivation

was motivated by the proposed approach of Den Heijer & W. C. Rheinboldt [4].

3.1 Stage 1: the steplength relation with an error

Let U0 be a predicted point which lies in some neighborhood around the solution path

||R|| = 0, and T be an iterative corrector process which in our discussion is Newton (Figure

3.1):

U0(α) = Uinit + α
dU

dλ
,

where λ is some arbitrary chosen parameterization of the solution path, Uinit is an initial

state unknown.

Then, the corrector may be viewed as an iterative process which brings the predicted

point U0 to the point on the solution path with some prescribed tolerance criterion:

Uk = T (U0(α)).

In the further discussion lets assume that for steplength very small α > 0, the follow-

ing limit exist:

U∞(α) = lim
k→∞

Uk(α) ∈ R(0).

The corrector process T acts orthogonality to the tangent line dU
dλ

initiating at Uinit

(Figure 3.1). It is fare to say that the angle between ‖U0 − U∞‖ and δ is π/2 +O(α). Using

the Ferent frame representation of the solution path, we can define each point on the curve

as:

39

Figure 3.1: Illustration of the local parameterization

Figure 3.2: The overview of the steplength selection procedure

40

λ(α) = λ(0) + α
dU

dλ
(0) +

α2

2
k(0)N(0) +O(α3), (3.1)

where k(0)N(0) is a curvature and a normal vector to the solution curve accordingly,

N(α) =
d2λ(λ)

dα2
− [

d2λ(λ)

dα2
,
dλ(α)

dα
]
dλ(α)

dα
, (3.2)

k(α) =

∥∥∥∥d2λ(λ)

dα2

∥∥∥∥ . (3.3)

Then, the predicted point which lies on the tangent line (Figure 3.1), can be obtained

as:

U0(α) = Uinit(0) + α
dU(0)

dλ
.

By throwing out all the terms higher than quadratic, a truncated solution Uk ≈ U∞

could be written:

U∞ ≈ Uk = Uinit + α
dU(0)

dλ
+
α2

2!
k(0)N(0). (3.4)

The error between the predicted point U0 and the solution U∞ is defined as:

ε0 = ‖U∞(α)− U0(α)‖ =
α2

2!
k(0)N(0) +O(α3). (3.5)

The objective is to obtain an approximation of the future error ε̃0, and it’s dependence

on the future steplength α̃. As one of the ways, it has been suggested by the researchers to

take a constant curvature along the solution path. Therefore, the predicted error could be

found by using the ratio of two errors (Equation (3.5)) [1]:

ε0

ε̃0

=
‖U∞(α)− U0(α)‖∥∥∥Ũ∞(α̃)− Ũ0(α̃)

∥∥∥ =
k(0)N(0)α2

k(α)N(α)α̃2
, (3.6)

41

where Ũi is the iterate of the future sequence, k(α)N(α) - curvature and normal vector

evaluated at α on the solution path.

By enforcing the assumption k(0)N(0) = k(α)N(α), we can get an equation only

with two unknowns, ε̃0 and α̃:

ε0

ε̃0

=
α2

α̃2
,

α̃ = α

√
ε̃0

ε0

. (3.7)

Equation (3.7), gives the explicit relation of the future error ε̃0 with the steplength

α̃. Please note here, in order to obtain such relation they imposed rather harsh assumption

for the higher order terms of expansion (3.4). They assumed that the curvature of the

solution path would have the same value at different points, in other words, the accuracy

of the future points will be lagging by one step(previous iteration) behind. Based on many

simulation tests this model was proved to be very conservative, and it does not accurately

represent the real change in the initial error.

Those critical assumptions in Equation (3.7) were the motivation on deriving a more

accurate representation of the error dependency with the steplength α̃(ε̃). Begin with the

formulation of the error at the future steplength:

ε̃0 =
∥∥∥Ũk(α̃)− Ũ0(α̃)

∥∥∥ =
α̃2

2!
k(α)N(α).

The above equation can be solved explicitly for α̃:

α̃ =

√
2! ε̃0

k(α)N(α)
. (3.8)

The calculation of the second order term might put some additional cost on the

algorithm. If there is a need to decrease computational complexity, the second order approx-

imation can be substituted with the norm of the first order. Hence, the higher order terms

42

of the expansion are always bounded by the norm of lower ones.

α̃2

2!
k(α)N(α) = α̃

∥∥∥∥dU(α)

dλ

∥∥∥∥ . (3.9)

Then, the resultant equation of the first stage will have the following formulation for

the future steplength:

α̃ =
ε̃0∥∥∥dU(α)
dλ

∥∥∥ . (3.10)

The derived equation (3.10) will be used as a primary relation of the steplength with

the error in the following discussion of the proposed algorithm.

3.2 Stage 2: the relation of a steplength and an iteration number

This section will cover some basic understanding of a good error model necessity,

provide the description of the classical model implementation proposed by Rheinboldt, and

will discuss the most suitable model for the reservoir simulation cases. As was mentioned

earlier the proposed steplength selection algorithm based on the previously obtained iteration

sequence data. Therefore, having such history knowledge at hand, an error model which will

mimic the error decay throughout the iterations with a good accuracy needs to be found. The

accepted error model will be used in order to obtain an estimation for the future error ε̃0 at

some steplength α̃ (Figure 3.2). Thus, the accuracy of the model is a paramount importance

for the reliable prediction and retrieving the convergence quality information. It has been

stated by researchers that increasing the accuracy of the error model in describing the error

decay at the past timestep would lead to a more efficient steplength selection strategy.

3.2.1 Classical approach

There are several different error behavior regulations on which the error decay models

are based. The classical error models employ the following behavior:

43

εi+1(α) ≤ ϕ(εi(α)), (3.11)

where ϕ : R → R is the error model function, such that ϕ(0) = 0, the model of this nature

has to be applied over and over to observe a decaying tendency throughout iterations. εi is

an error of the previous iterate of the sequence, regarded as ‖Ui(α)− U0(α)‖.

Den Heijer & Rheinboldt [4, 7] proposed to use the following two error models which

are derived from Newton-Kantorovich theory:

ϕ(ε) =
ε2

3− 2ε
, (3.12)

ϕ(ε) =
ε+
√

10− ε2

5− ε2
ε2. (3.13)

Also one more classical error model of superlinear convergence:

ϕ(ε) = εp, p > 1. (3.14)

All of these error models provide some estimation of the error decay, based on the

assumptions they have derived on. In other words, each of the model will accurately approxi-

mate only certain error behavior type(rate of convergence). For example, the models derived

based on Newton-Kantorovich theory are employ an assumption of quadratic convergence.

Please note here, the models can be only used with a relative error as an input

0 ≤ ε ≤ 1, because of the error behavior type (3.11).

Suppose for the initially given steplength α (Figure 3.2) computed the predictor step

where the tangent line emanates from point t1, the corrector is stopped after k iteration

at a point t2, fulfilled tolerance requirements, and the corrector process exits with an ap-

proximation Uk(α) ≈ U∞. Therefore, it is possible to evaluate the relative error for the last

iteration:

44

w(α) =
‖Uk(α)− Uk−1(α)‖
‖Uk(α)− U0(α)‖

≈ ‖U∞(α)− Uk−1(α)‖
‖U∞(α)− U0(α)‖

=
εk−1(α)

ε0(α)
. (3.15)

Den Heijer & Rheinboldt failed to employ a posterior estimate of a convergence

radii around the solution path; They reported such estimates cannot be obtained from the

sequence of corrector iterates alone. It will also require having some global information about

a function which could be obtained on a balance of a considerable expense. However, the

sequence of corrector iterates does allow to compute convergence quality of certain types of

correctors.

The following work-flow is used to obtain the estimated error relation with the number

of iterations, based on classical error models ε(k):

1. Need to solve the following ratio which involves one of the proposed monotonic error

models ϕ in order to obtain the convergence quality estimation adjusted to the error

model accordingly:

ε̄0 =
ϕk−1(ε0)

ε0

= w, ϕ(0) = 0, ϕ(1) = 1. (3.16)

2. To obtain the future error at the next step which would satisfy the stopping criterion

after a given number of desired iterations k̃. The following relation helps to acquire

an estimated error ε̃ for the future timestep as a function of the desired number of

iterations (Figure 3.3):

ϕk̃(ε̃0) = ϕk(ε̄0), (3.17)

where the power indexes k̃, and k are the desired numbers of iterations specified by a

user and the number of iterations taken for the current timestep to converge accord-

ingly. Moreover, in the case when the number iterations taken in the current timestep

and the prescribed number of desired iteration are equal k = k̃, Equation (3.17) would

result with the estimated initial error ε̃0 = ε̄0, and the future steplength would be of

45

Figure 3.3: The relation of the previous and the future error

the old value α̃ = α.

The main objective has been accomplished and the relation of the future error with

respect to the number of iteration is obtained ε(k). Moreover, the resulting error estimation

from the proposed algorithm in tandem with steplength Equation (3.7) derived in the first

stage, will give such steplength that the corrector would converge only in the desired number

of iteration. Therefore, this approach gives control upon the rate of convergence of underlying

formulation.

3.2.2 Error model validation

The main objective of this section is to determine whenever the model accurately

describe the error decay followed by each iteration in the iteration sequence. Moreover, the

order of accuracy is very important for retrieving the reliable estimate of the future error,

where the corresponding steplength α̃ will be obtained by solving Equation (3.7) or (3.10). It

is highly important to select a reliable error model, taking into account that it will be to be an

essential kernel for the whole Modified Continuation Newton algorithm. It was highlighted

by many researchers, with increasing the accuracy of the error model in describing the decay

46

behavior of the previous timestep, would lead to more efficient steplength selection strategy.

In order to validate a suitability of the models for the subsurface flow purposes,

each of them has been verified on the two phase flow simulation model with capillary and

gravity effects on SPE10 geological grid with 60x220x2 dimensions. 5 production as well as 2

injection wells have been placed on 5-spot inverted pattern on the grid. The capillary gravity

equilibrium was computed to initialize distribution of primary reservoir variables. In order

to safeguard Newton’s updates, the Modified Appleyard damping strategy is employed.

The test simulation is performed for the series of timesteps, ∆t = [0.05,0.5, 1.0, 10.0],

at each timestep the sequence of iterates is recorded. The motivation of taking variety of

timesteps is to bring the predicted point further from the solution at a particular timestep

size, which will stress the nonlinear Newton solver. Thus, a sequence will result in an

increased number of iterations taken to converge which will give leverage for the proper

error model evaluation.

Figures(3.4, 3.5, 3.6) present the comparison, where on vertical axis - the relative

error decay measurement; on horizontal axis - the number of iterations; red curve - the

recorded sequence of iterations; blue curve - the estimated error computed by one of the

models. As was mentioned before, the sequence is the normalized measure of a proximity

of each Newton iterate to the solution of a particular timestep, also it can be viewed as the

relative error measurement of each iterate. The estimated error is an approximation of the

real error computed by the models, based on behavior regulation equation (3.11), where only

some of the information of the current iteration sequence was provided. Based on how close

the two curves are throughout the error decay, the conclusion of the most suitable model for

the discussed purposes could be drawn.

The first classical error model was tested by the formulation given in the equation

(3.12), and repeated below:

ϕ(ε) =
ε2

3− 2ε
.

47

Figure 3.4: Validation of the first error model for the four cases: (a) - ∆t = 0.05 days, (b) -
∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days

48

Figure 3.5: Validation of the second error model for the four cases: (a) - ∆t = 0.05 days,
(b) - ∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days

49

As presented in Figure 3.4, the estimation obtained from the model is not precisely

following the curve of the real decay sequence. Moreover, the estimated curve preserves the

uniform shape throughout all the points which is the main reason of the distinction of two

curves.

The second classical model stated in the equation (3.13), and repeated below:

ϕ(ε) =
ε+
√

10− ε2

5− ε2
ε2.

Following from Figure 3.5, we obtained almost the same result as for the first tested

model, but at the following timesteps ∆t = [0.05, 0.5] the estimated error increased the

proximity to the real error curve.

Having tested two of the models, an intermediate conclusion could be drawn. The

error models which were derived from the Newton-Kantorovich theory have a difficulty in

following the error decay of a non-quadratic convergence rate behavior. Hence, tested models

have small compatibility in the reservoir simulation, because in rarely cases the reservoir

simulation iterative sequence converges with uniform rate, most of the time iterates are

experiencing other type of convergence: sublinear or superlinear. Therefore, the estimated

error obtained from these models will always be underestimated. Such drawback lessen the

applicability of these models in subsurface flow simulation problems.

The last proposed classical model comes from superlinear convergence consideration,

presented in the equation (3.14), and also stated below:

ϕ(ε) = εp, p > 1.

The error model gives more flexibility to fit the real error curve, because it has a

varying exponential parameter p which can be different and be specified at each simulation

run. In order to test the sensitivity of the model on the exponential parameter p, the range

1.25 ≤ p ≤ 4.75 are tested for various timesteps.

Following from Figure 3.6, the accuracy of the error model varies with different

50

Figure 3.6: The superlinear model validation for the four cases: (a) - ∆t = 0.05 days, (b) -
∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days

51

timestep sizes. Moreover, a good approximation result in cases when the exponential value

was known prior the computations. The shape of the estimated error curve highly depend on

exponential parameter p and using an arbitrary value will not result in a good approximation

because at some timesteps the changes in the reservoir physics can happen faster, which will

affect the convergence rate. The shape of the approximated decay in some sense compatible

with the previous models, because it also assumes a uniform convergence rate:superlinear.

The previous three error models were based on the the following behavior regulation

εi+1(α) ≤ ϕ(εi(α)). Here, will encourage a discussion for a different type:

εK+1(α) ≤ ε0(α)F(K), (3.18)

where F(K) is an arbitrary decaying function, K is an iteration counter which is the forcing

term in the formulation. Note, the requirement of having only normalized error 0 ≤ ε ≤ 1

is no longer applicable. The error can be computed as a difference between each iterate of

the sequence to the solution ||Ui − Un||, i = 0 . . . n.

The rest of this section will be dedicated to the famous exponentially decaying error

model. The model is used in a variety of engineering applications for modeling naturally

accruing processes. Below, presented a differential form of the model:

dε

dK
= −ηε. (3.19)

The solution of the ordinary differential equation (3.19):

ε(K) = ε0exp(−ηK), (3.20)

where η is an exponential decay constant, and ε0 is the initial deviation from the solution

point. The model takes into account a changes in the error along the iteration sequence. In

order to increase the accuracy and the ability of fitting the exponential model, an additional

degree of freedom introduced to the model by a coefficient β:

52

Figure 3.7: Exponential model validation for the four cases: (a) - ∆t = 0.05 days, (b) -
∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days

ε(K) = βε0exp(−ηK). (3.21)

The results are shown on Figure 3.7, the model adjusted by the coefficients η and

β for each of the tested timesteps. The model shows a good accuracy in the first timestep

∆t = 0.05 test, but it still lacks flexibility for other ones. The main reason again is in the

convergence rate of the formulation. Moreover, even with perfectly fitted exponential model

the end points are asymptotically approaching the zero, but with a slower rate. Hence, the

difference at the end points could be big.

In summary, each of the tested error models has some ability in accurate description of

certain parts of the real error curve. Where, the first two model of Kantorovich theory as well

53

as exponential have a good degree of accuracy in the regions of the quadratic convergence; the

second model of superlinear convergence results with a good approximation where primarily

the superlinear behavior occurs.

Hence, we need to develop an error model, which will be able to account for for

different convergence rate in the same iteration sequence.

3.2.3 Reservoir Simulation Error Behavior

The reasons for the failures of the previous models were in the conservative estimation

of the convergence rate throughout the iterations. The uniform convergence rate consider-

ation cannot be applied for the wide range of simulation cases. Mainly, the shortfall of a

uniform convergence is due to the guess being outside the quadratic convergence region.

The reasons for stated in the previous sentence problem: first, the complex modeled physics

which is able to change dramatically even with a small value of the timestep size; second,

taking the timestep size bigger than some threshold for moderate physics.

The typical example of the reservoir simulation error decay is shown on Figure 3.8.

At the early stage when a few iterations performed, it might be observed that the error

stalls, which can be described as the sublinear convergence rate region. After some iteration

it enters a new stage of superlinear convergence, where the changes are occurring faster than

in the previous. Finally, when the performed iterations brought the guess in the quadratic

convergence region, the convergence happens with quadratic speed.

The main objective of this section is to find an error model which could encompass

various convergence rates inside one formulation.

It seems that a logistic function has all the features to be an appropriate fit for the

peculiar error decay in the reservoir simulation cases. Moreover, it has very long history

in various scientific applications: ecology, modeling population growth, statistic, logistic

regression; physics, Fermi distribution etc. It essentially represents an ”S” shape curve

which defined for all real values and has a non-zero first derivative at each point. The end

points are asymptotically approaching zero of the function (3.22) as x→ ±∞. The general

54

Figure 3.8: Reservoir Simulation error decay

form of the logistic function stated as:

F(x) =
1

1 + exp−x
. (3.22)

A successful logistic function for reservoir simulation obtained by introducing two

additional degree of freedom B and M to the equation (3.22). In the following, the error

model formulation could be written:

ε(N) = ε0
1 + exp(B −M)

1 + exp(−M +B(1−N))
, (3.23)

where ε(N) - the error decay value throughout the iterations N ; ε0 - initial error of the

iteration sequence and B and M are fitting coefficients.

Carefully chosen coefficient place in formulation (3.23), enables to change some of the

important regions on the logistic function in order to increase the accuracy of the approx-

imation. B coefficient accounts for prolongation of the quadratic region or in other words,

the sharpness of the error decay curve (Figure 3.9). For instance, increasing B will result in

55

Figure 3.9: Logistic Function: B dependency

Figure 3.10: Logistic Function: M dependency

56

Figure 3.11: The logistic function model validation for the four cases: (a) - ∆t = 0.05 days,
(b) - ∆t = 0.5 days, (c) - ∆t = 1.0 days, (d) - ∆t = 10.0 days

a greater sublinear and smaller superlinear region. M coefficient responsible for the length

of the sublinear region (Figure 3.10).

In order to validate the model for the subsurface flow simulation purposes. The

same test case used as for previous error models: 3-dimensional, the two phase flow sim-

ulation model with capillary and gravity effects on SPE10 geological grid with 60x220x2

dimensions, and 5 production as well as 2 injection wells. The following series of timesteps

∆t = [0.05, 0.5, 1.0, 10.0] days are tested.

The results are shown on Figure 3.11. The B and M coefficients were computed for

each case, based on the two given points on real error decay curve and the initial error ε0.

57

It can be observes that the model has a remarkable accuracy to the real error decay, even a

stall in the case ∆t = 1.0 was not a problem.

3.3 Conclusion

This section concludes the proposed steplength selection algorithm which is based

only on theoretical considerations. In contrast, the previously used steplength algorithm

(Convergence Neighborhood) in reservoir simulation was based on heuristic which had a

shortage of applicability for general cases. The proposed algorithm is able to select the most

appropriate steplength along the tangent line according to a user given iteration constraints.

The strategy is broken down into two stages:

1. Stage 1: A more accurate and reliable relation between a steplength and an initial error

which does not have major restrictions is derived. The relation does not employ the

assumption of having the same curvature value at neighboring points. The following

represent the relation:

α̃ =
ε̃0∥∥∥dU(α)
dλ

∥∥∥ .
2. Stage 2: The derivation of the steplength on the iteration number dependency required

a deep investigation. The relation could be obtained by enforcing Equation (3.17) or

the following formulation:

ϕk̃(ε̃0) = TOL, (3.24)

where ϕ is the error model; k̃ is the desired number of iterations; TOL is an error value

that a user wants to observe after k̃ iterations and ε̃0 is an initial error for the future

timestep which in this equation is an unknown.

The main challenge of the above formulation is to define the error model ϕ which

will fit for reservoir simulation cases. A different speed of convergence is the major

58

restricting obstacle for many error models. The best fitted error model was derived

based on the logistic function:

ε(N) = ε0
1 + exp(B −M)

1 + exp(−M +B(1−N))
,

where B and M are fitting parameters of the model.

The overall algorithm can be written as follows:

Algorithm 3: The steplength selection algorithm

Data: Ui - iteration sequence, k̃ - desired number of iterations
Result: Future steplength α̃
Obtain the coefficients B and M from the sequence Ui
Solve for ε̃0 from the logistic function error model (3.23) and relation (3.24)
Finally, compute the future steplength along the tangent line using formulation (3.10)

59

CHAPTER 4

SIMULATION EXAMPLES

The Modified Continuation-Newton (MCN) is a result of a combination of two essen-

tial components: the devised tangent line formulation and the steplength selection routine.

A simulation case of three phase flow with gravity is used to investigate the performance of

the proposed MCN algorithm.

4.1 The three phase compressible flow

The back oil simulation involves a compressible flow of three phases. Oil and gas are

non-wetting phases, and water is wetting. Mass of each component is conserved, but mass

of a phase is not. Assumptions, no mass transfer between water and hydrocarbon phases,

and no hydrocarbon component exist within the water phase. For instance, if a pressure

is greater than a bubble point pressure Pb at a particular part of a reservoir, then the gas

component is dissolved into the oil phase and not into water. Moreover, the oil phase consists

of the gas and the oil components; vapor phase only gas component.

PVT behavior of the system is expressed by formation volume factors as follows:

Bo =
[Vo + Vdg]RC

[Vo]STC

Bw =
[Vw]RC
[Vw]STC

Bg =
[Vg]RC
[Vg]STC

.

The mass transfer between oil and gas phases is described by the solution gas-oil

ratio:

60

Rs =

[
Vdg
Vo

]
STC

.

The governing equation for the oil phase: [2]

−∇
[

1

Bo

uo

]
=

∂

∂t

[
1

Bo

φSo

]
+ qo, (4.1)

where Bo is the oil formation volume factor (PVT behavior); uo - Darcy velocity of

the oil phase and φ is the porosity of the reservoir and qo is a sink/source term.

The water equation:

−∇
[

1

Bw

uw

]
=

∂

∂t

[
1

Bw

φSw

]
+ qw. (4.2)

The vapor equation:

−∇
[
Rs

Bo

uo +
1

Bg

ug

]
=

∂

∂t

[
φ

(
Rs

Bo

So +
1

Bg

Sg

)]
+ qg +Rsqo. (4.3)

The Darcy’s relation between the rate and a pressure gradient can be written in the

following form:

u = −k
µ

(∇p+ ρg∆z) , (4.4)

where k is a permeability tensor of the reservoir; µ and ρ is the viscosity and the density

of a fluid accordingly, g is gravitational acceleration and ∆z the difference in the vertical

direction.

The Black Oil model is computed on SPE10 (Comparative Solution Project model

2) geological grid. The model dimensions are 1200×2200×170 (ft.), and fine scale cell size

is 20(ft)×10(ft)×2(ft). Due to computational time, only several layers of Tarbert formation

were taken.

The two wells(production and injection) were located on the opposite grid corners.

The injection well operates based on the flow rate control mechanism, whereas the production

61

on the pressure control Pbh

The primary unknowns are depended on the number of phases at a particular con-

dition. When the pressure less than bubble point, and the gas exist as a separate phase,

the choice of primary unknowns comes to the pressure of oil Po, the water Sw and the gas

saturation Sg. In the case of the pressure higher than bubble point, the primary unknowns

are: the pressure of oil, the water saturation, and the dissolved gas Rs factor.

4.2 Algorithm

The overview of the proposed algorithm and a general implementation for solving

any nonlinear problem are the main topic of a discussion here. As was mentioned in the

earlier chapters, the Modified Continuation-Newton has to incorporate at least two separate

routines in order to be able to solve a stated nonlinear problem:

1. The routine for computing a tangent line has to be developed. In the chapter 2 dedi-

cated to tangent lines, some of the improvements for the tangent line computation and

accuracy were reviled. The final algorithm up-to some degree uses those improvements.

First, compute simulationationally-wise the timestep size parameterization of the zero

residual level curve dR(U(∆t),∆t)
d∆t

= 0 is chosen. Second, it was proven in the chapter

2, that the higher order predictor results with a slightly better approximation, but it

comes on a balance of a considerable expense. Hence, it has not found its implementa-

tion in the final algorithm. Third, in order to improve the stability of the predictions,

the Heun’s method is implemented [11].

The Heun’s method implementation in predictor-corrector scheme represents a mor-

phism of an Euler first order predictor and a trapezoidal rule. Consider, the tangent

line differential equation for the reservoir simulation cases:

dU

d∆t
= −J−1 dR

d∆t
= f(U,∆t), U(∆t0) = U0,

where U0 and ∆t0 are the known state and associated timestep size accordingly

62

First, from the current state U0, calculate a predicted value by the Euler method:

Ũn+1 = U0 + αf(U0,∆t0).

Then, improve the prediction by using the trapezoidal rule:

Un+1 = U0 +
1

2
α(f(U0,∆t0) + f(Ũn+1,∆tn+1)). (4.5)

The resulted guess Un+1, is more stable withing a considerable range of a steplength

α.

2. The routine of the steplength selection. Although, the newly derived error model

which is based on the logistic function, has shown a good approximation to the real

error behavior in reservoir simulation cases, it can not be implemented for a big scale

problems at the current state of the research. The main reason, the computation of the

error decay requires to record each Newton’s iterate, and only when Newton process

converges it is possible to compute the proximity of iterates to the obtained solution.

The discrete Newton iterate represents a vector of unknowns with the size of Nb×Neq

number of grid blocks times the quantity of primary equations at each cell. Hence,

without knowing a priory how many such iterations will Newton take to converge for

big scale problems, it increases the risk of trashing the memory(RAM) or getting out-

of-bounds allocation(bad alloc). The possible remedy is to use less informative but

more memory efficient quantities. For example, a norm of the residual equation. The

residual based error model needs to take only a single sample of the residual vector,

which is a scalar. However, at this point the investigation of error model based on

other measurements, has to be conducted in the future work.

In the finial steplength selection algorithm for multi-scale problems, some of the alter-

nation had to implemented:

First, at the beginning of the simulation the arbitrary small initial error ε0 for each

63

variable needs to be stated and a target number of iterations Ntarg should be specified.

The target number of iterations is used as an adjustment factor for the future error.

Second, the steplength needs to be computed based on the provided error variation ε0.

In order to obtain the error relation with the steplength, the Taylor series expansion

of the solution path has to be written:

ε0 = ||Upred − U∞|| =
α2

2

d2U

d∆t2
, (4.6)

where the terms higher than the second were omitted.

To eliminate the tedious computation of the second order derivative d2U
d∆t2

, which results

in a tensor, a norm of the first order is computed instead. Knowing that higher order

term are always bounded by the norm of a lower orders, the following relation can be

written:

d2U

d∆t2
= α

∣∣∣∣∣∣∣∣ dUd∆t

∣∣∣∣∣∣∣∣ . (4.7)

Then, by substituting the relation (4.7) to the error formulation (4.6), the steplength

along the tangent line can be computed as:

α =
ε0∣∣∣∣ dU
d∆t

∣∣∣∣ . (4.8)

Because the initial error is define arbitrary, it needs to make adjustments throughout

the simulation run in order to adapt the most reliable steplength. The proposed way is

to compute the ratio of the target Ntarg and taken N number of iterations as follows:

εn+1
0 = εn0

Ntarg

N b
, b =

∣∣∣∣ dU
d∆t

∣∣∣∣
old∣∣∣∣ dU

d∆t

∣∣∣∣ , (4.9)

where εn+1
0 is the adjusted error value, b is the ratio of the old tangent and the current

one. The b ratio gives more stable timestep advancement because it changes according

64

to the undergoing physics.

The algorithm is presented on flow chart 4.1 and on the schematic plot 4.2. First,

the small error for each of the independent variables needs to be chosen in such a way that

it would result in sufficiently small first steplength α. As shown on Figure 4.2, the first

tangent line t̂1 is emanating from the origin point S0 = (Un,∆t), which is a known state.

The Newton’s method is used to bring the predicted value Upred to the solution point U∞.

After obtaining the solution, the error adaptation has to be computed in order to get the

steplength consistent with the target number of iterations. These discrete procedures will

be repeated until the timestep size requirement is met.

4.3 Results

As was stated before, due to computational time the first 5 layers of SPE10 were

chosen for the simulation (Figure 4.3). The two cases were drawn based on SPE10, where

both of them have the same grid dimension of [NX = 60, NY = 220, NZ = 5] and the

gravity forces acting in the formulation. The first case is dedicated to test the possible

limitations of MCN algorithm in solving the problem with moderate physics. It also includes

two wells: one is production, which operates based on the pressure control at 2000 psi and

the other one is injection well, which is the rate control with an injection rate of 0.05 rb
day

.

The second case is meant to test the ability of the MCN to handle stiff physic problems,

where one additional couple of injection and production wells was placed on the grid. Those

wells have the increased injection rate to 0.1 rb
day

and decreased bottom hole pressure for

production wells to 1000 psi. The correctness of the developed simulator is verified based on

the comparison with Eclipse commercial simulator in the Appendix A of this work.

For each simulation case, the parameters as the target timestep size, the number of

iterations, and the initial error are to be selected. The initial errors for both of the cases

are chosen to be the same. Moreover, it assumed that the future pressure change will be

bounded by the value of the error, which ε0(P) is 25 psi. The error for the saturation of

water and gas is chosen as 0.2.

65

Figure 4.1: Flow chart of the proposed MCN.

66

Figure 4.2: Illustration of the MCN algorithm

The selection of the target number of iterations is purely based on the performance

considerations. One might choose the target to be 3 iterations, and follow the solution path

closely which will guarantee the convergence all the time. Whereas others might choose it

to be 10 or more iterations, it increases the efficiency but acquires the possibility of cutting

the steplength at some point. Such possibility is dramatically decreased in the proposed

algorithm, by the use of some physics change information. For both cases the target number

of iterations Ntarg is selected to be 6.

The target timestep size as well plays an important role in the performance of the

algorithm because along the solution path if something major happens it would significantly

change the shape. for instance, a new well comes on, phase appearance/disappearance.

Therefore, following such solution path would result in many iterations. Hence, the old state

variables need to be updated with a certain frequency. For both of the cases, the target

timestep size is chosen to be 50 days.

The algorithm, however, needs to have a prepossessing routine, which will be able

to test the different convergence criteria. It would propose the most applicable parameters

67

Figure 4.3: The parameters distribution for the first layer

68

of the target timestep size and number of iterations for the specific simulation case. Such

routine is in a developing stage and will be presented in the following works.

The following represents a one timestep simulation test for the moderate physic case.

4.3.1 One timestep simulation

In this section, the full simulation is performed as one timestep in order to be able to

measure the maximum capability of timestep convergence and performance of the proposed

algorithm and the standard Newton’s method. One timestep simulation was performed based

on moderate physic case because it would not limit the convergence of standard Newton,

which would give leverage in appropriate comparison. The range of timestep sizes initiates

from 0 to 57 days, which would be enough to compare the two methods.

The results are presented on Figure 4.4, where horizontal axis is the range of timestep

sizes and vertical axis is dedicated for number of iterations taken at particular timestep size.

It can be seen that the standard Newton works good in the earlier timestep sizes, but after

∆t = 10days it stops converging. On the other hand, the proposed Modified Continuation-

Newton performs reasonably well throughout all the timestep sizes.

The obtained results could be interpreted as: the standard Newton converges with

higher rate where it can, but when the timestep size takes the corresponding solution further

from the initial guess, the standard newton does not converge within the prescribed number

of iterations MAXITER = 500. In contrast, the MCN algorithm is not very sensitive on

the initial guess and converges every timestep.

4.3.2 Full simulation

In both cases, the full simulation was computed up-to 1000 days. The comparison

were made between the proposed MCN algorithm and the-state-of-art Newton’s solver, which

is safeguarded by the modified Appleyard chop, and employs Eclipse timestepping strategy.

The results for the first case of moderate physic are shown on Figure 4.5. The

horizontal axis is the simulation time and the vertical axis is the number of linear solves

the simulator performed during the calculations. It can be noted that the Eclipse based

69

Figure 4.4: The full simulation as one timestep size

standard Newton (red curve) is lying always below the MCN (blue curve). Moreover, the

standard Newton after 1000 days resulted with 281 linear solves, whereas MCN has 465

linear solves. The main reason for the deficiency of the MCN is that the physics undergoing

in the reservoir is not stiff enough, which prevents the use of the knowledge of the solution

path. The MCN lacks the sense of a good convergence rate at a particular timestep size.

For instance, the MCN at some point in the simulation takes steplength to be 5 days, which

converges after 6 iterations. On the other hand, the standard Newton takes a bigger timestep

size of 10 days and would have the same number of iterations to converge. In the light of

the obtained results, the error adaptation routine has to be modified, which should not be

based on the number of iterations counter. Figure 4.7 shows, the timestep size when the

standard Newton could not obtain the solution and where the chop is applied. The first

layer variables distribution after 1000 days of simulation is presented on Figure 4.9.

The comparison results of the stiff physic case are presented on Figure 4.6. It can

be seen that the standard Newton lies above the MCN curve all the time because of the

70

complex physic and its inability to identify the changes in the state unknowns, which makes

the standard Newton to cut the timestep size along the simulation run. As shown on Figure

4.7, the simulation based on the standard Newton had to be terminated after 431 days

because the timestep size was prohibitively small ∆t < 0.0001 day. Therefore, the MCN

took 913 linear solves for 1000 days and the standard Newton took 7505 linear solves for

431 days. The problem with convergence might be related to a variable switching. On the

other hand, the MCN algorithm has no problem with this case. The first layer variables

distribution after 1000 days of simulation is presented on Figure 4.10.

71

Figure 4.5: First case: the full simulation for 1000 days.

Figure 4.6: Second case: the full simulation for 1000 days.

72

Figure 4.7: First case: standard Newton timestep reduction.

Figure 4.8: Second case: standard Newton timestep reduction.

73

Figure 4.9: First case: the variables distribution after 1000 days.

74

Figure 4.10: Second case: the variables distribution after 1000 days.

75

CHAPTER 5

DISCUSSION AND FUTURE WORK

We developed and illustrated the Modified Continuation-Newton algorithm, which

is based on the predictor-corrector nature, for solving implicitly defined residual systems.

The algorithm follows the solution path of a given nonlinear problem, which employs the

knowledge of a uniqueness of a solution at a particular timestep. Even if the sequence of

iterations is halted at some point, the algorithm will result with a solution for a smaller than

a target timestep size. It is possible because each iterate of MCN is a solution for a specific

timestep. The performance of the algorithm was illustrated using challenging Black Oil

simulation on SPE10 geological grid, where the MCN showed a superior performance over the

state-of-the-art Newton’s method guided by Eclipse timestepping strategy and safeguarded

by Modified Appleyard chop. Yet the algorithm can be further improved.

The MCN employs a trapezoidal rule for improving the stability of the tangent line

computation. Thus, the steplength could be taken bigger as opposed to the first order explicit

scheme(Euler). But, we envision a possible improvement in a stability based on conducted

trial tests. Those tests motivate to focus our attention toward the local fixed point iteration

of ordinary differential equation which rises at the tangent line formulation.

The implemented steplength selection algorithm is based on the allowed error varia-

tion thought the simulation run. The performance of the MCN is essentially based on the

initially given parameters to the algorithm as the target timestep size and the number of

iterations. Therefore, it needs to have a prepossessing routine, which will be able to test

the different convergence criterion, and will propose the most applicable parameters for the

specific simulation case. Such routine is in the developing stage, and it will be presented in

the following works.

76

The other way to select the steplength is to use an error decay model(chapter 3).

The derived logistic error model shows its ability in accurate describing the error decay of

sub-surface flow formulations. It also proved its efficiency for 1D Buckley-Leverett, and

small 3D two phase flow problems. However, in order to efficiently use any of the models

for multi-scale problems, we need to find a replacement for the input variables. The possible

option is to use less informative but more memory friendly measurements, such as the norm

of the residual equation. Moreover, the residual based error is easier to obtain, because it

needs to take only a single sample of the residual vector at each Newton iteration, which

results in a scalar. Thus, the whole mechanism and the theory has to be revised to fit new

measurements.

77

BIBLIOGRAPHY

[1] E.L. Allgower and K. Georg. Numerical Continuation Methods: An Introduction.

Springer-Verlag, Berlin Heidelberg, 1990.

[2] K. Aziz, K. Aziz, and A. Settari. Petroleum reservoir simulation. Applied Science

Publishers, 1979.

[3] Z. Chen, G. Huan, and Y. Ma. Computational Methods for Multiphase Flows in Porous

Media. Computational Science and Engineering. Society for Industrial and Applied

Mathematics, 2006.

[4] C Den Heijer and WC Rheinboldt. On steplength algorithms for a class of continuation

methods. SIAM Journal on Numerical Analysis, 18(5):925–948, 1981.

[5] M. S. Hussein J. C. A. Barata1. The moore-penrose pseudoinverse. a tutorial review of

the theory. Brazilian Journal of Physics, 42(1-2):146–165, 2012.

[6] D.W. Peaceman. Fundamentals of Numerical Reservoir Simulation. Developments in

Petroleum Science. Elsevier Science, 2000.

[7] Werner C Rheinboldt and John V Burkardt. A locally parameterized continuation

process. ACM Transactions on Mathematical Software (TOMS), 9(2):215–235, 1983.

[8] PH Sammon and B Rubin. Practical control of timestep selection in thermal simulation.

SPE Reservoir Engineering, 1(02):163–170, 1986.

[9] Schlumberger. Eclipse Version 2013.1: Technical Description, 2013.

[10] Schlumberger Information Solution, San Felipe, Suite 100, Houston, TX 77056-2722.

Traning and Exercise Guide, 2008.

78

[11] Endre Süli and D. F. (David Francis) Mayers. An introduction to numerical analysis.

2003.

[12] Xiaochen Wang and Hamdi A Tchelepi. Trust-region based solver for nonlinear transport

in heterogeneous porous media. Journal of Computational Physics, 253:114–137, 2013.

[13] Rami Younis, Hamdi A Tchelepi, and Khalid Aziz. Adaptively localized continuation-

newton method–nonlinear solvers that converge all the time. SPE Journal, 15(02):526–

544, 2010.

[14] Rami Mustafa Younis. Modern advances in software and solution algorithms for reser-

voir simulation. PhD thesis, Stanford University, 2011.

79

APPENDIX A

RESERVOIR SIMULATOR VALIDATION

The motivation for writing this appendix is to provide the researchers and interested

people with the prove that the developed reservoir simulator is compatible with commercial

versions. Three phase sub-surface flow problem on 2D SPE10 geological grid is the main

focus of a comparison. The Schlumberger-Eclipse is the world leading standard for sub-

surface flow simulation was taken as a commercial simulator.

In order to be able to accurately verify the developed piece of software several cases

were tested:

First, we need to validate the correctness of the residual and Jacobian equation for

certain simulation. As a primary test the full simulation run up-to 100 days was taken.

Then, the plots of the relative error for each cell and each variable (P , So) is presented

on the couture maps (Figures A.1 - A.3). The relative error was computed by using the

following formulation:

εi =
|Uecl − Uc++|i
|Uecl|

,

where Uecl and Uc++ are the value of variables after 100 days based on Eclipse simulation

and developed code in C++ accordingly. Based on the presented Figures A.1 - A.3), the

maximum relative error is not exceeding 8%.

Second, need to validate Newton’s method. The simulation starts from t = 0, where

the timestep size grows ∆t = 1, 2, ... until the target timestep size is reached. At each ∆t, the

number of Newton’s iterations from Eclipse and C++ were recorded. From Figure A.4(b)

can be observed that the difference between Eclipse and the test simulator (C++) is only

+/- 1 to 2 iterations per timestep size. The total number of iteration taken by C++ code is

80

Figure A.1: The relative error for the pressure variable.

Figure A.2: The relative error for the oil saturation variable.

81

Figure A.3: An example of the oil saturation variable distribution: (a) - Eclipse, (b) - C++.

also compatible with Eclipse (Figure A.4(a)).

82

Figure A.4: Performance comparison: (a) - Total number of Newton’s iteration versus sim-
ulation time, (b) - number of Newton’s iterations at each timestep.

83

