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ABSTRACT

Shahriyar Alkhasli (Master of Science in Petroleum engineering)

On sufficient conditions for the convergence of damped Newton methods for the implicit

simulation of transport

Directed by Rami M. Younis

61 pp., Chapter 4: Discussion

(435 words)

Fluid flow in porous media is represented by nonlinear flow and transport equations,

which create difficulties in obtaining a solution for the system of equations. Analysis for

implicit treatment of the transport equation shows that Newton’s method fails to converge

in most of the cases with an S-shaped flux function for relatively large time step sizes. Thus,

current time step size is chopped, and previous iterations are wasted. These circumstances

increase total computational time for simulations, which serves as motivation for development

of safeguarding approaches for solution techniques used in reservoir simulation problems.

So far, the most popular method, which is found in commercial simulators, is the Eclipse

Appleyard method, a heuristic nonlinear solver which is unpredictable and not robust. No

classical proof of convergence is known for the recently-developed trust region based solver.

The new safeguarding approaches proposed in this thesis are based on the contraction

mapping theorem, proven by Banach in 1922, provides sufficient conditions for guaranteed

convergence of Newton’s method. Standard Newton’s method does not satisfies this condition

all the time; hence, a damping based method was formulated. The method can be applied

for any flux function shape, even for shapes more complicated than S-shaped. Robustness

and accuracy are independent of initial guess values, and convergence is at least linear.
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The first part of this work describes the so-called fixed damping based Newton’s

method, where a damping factor determines the contraction factor values for all possible

saturations below unity. This value remains the same during all iterations, which leads

to unnecessary chops in neighborhood close of the solution and causes a high number of

nonlinear iterations.

Thus, a dynamic damping based method is developed, which has the same level of ro-

bustness and accuracy as fixed damping based method. Moreover, efficiency of the method is

improved due to the strategy constructed, where chops are applied only for saturation values

that are not in the contraction region. Dynamic damping based method has been compared

to state-of-the-art nonlinear solvers. Our method demonstrates the following features: better

robustness, the same accuracy, and problem-dependent efficiency. Empirical results indicate

that: the new method can be faster, the same as, or slower than the other methods.

Numerical schemes for both fixed and dynamic methods have been generated for one

dimensional, two cell cases, where each grid cell is treated separately, using the same strategy

as for single cell problems. Performance and adaptive damping of the Newton update shows

identical results with single cell problems for a variety of cases.
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CHAPTER 1

INTRODUCTION

Reservoir simulations numerically model the dynamics of petroleum fluid flow within

the subsurface given a prior characterization of the highly uncertain physical system. Sim-

ulation is often the primary workhorse behind data assimilation, uncertainty quantification,

and optimization components of modern reservoir engineering workflows [11]. In light of

their practical role, industry-grade simulators are required to be:

• Flexible and scalable enough to accommodate sufficient physical complexity and detail,

• Computationally efficient enough to expedite practical decision-making timelines, and,

• Robust enough to be relied upon within automated, iterative driving processes such as

optimization.

Multiphase, multicomponent flows through subsurface porous media couple several

physical phenomena with vastly differing characteristic scales. The fastest processes, such

as phase equilibria, occur almost instantaneously and are modeled by nonlinear algebraic

constraints. Mass conservation laws govern the transport of chemical species that propagate

through an underlying flow velocity field [21]. In the limit of low capillary numbers, the trans-

port equations are purely advective, and they give rise to an evolution with a finite domain-

of-dependence. In the other limit, the transport problem is advective-diffusive. Moreover,

the underlying flow velocity field is itself also transient, and it evolves with parabolic charac-

ter. In the limit of no total compressibility, the flow field reaches instantaneous equilibrium,

and is governed by an elliptic equation. Constitutive relations such as the multiphase exten-

sion to Darcy’s law couple the variables across governing equations in a strongly nonlinear

manner [23]. Additional sources of complexity include the heterogeneity of the underlying
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porous media, body forces, and the presence of wells that are typically operated using busy,

and often discrete, control schedules. This leads to a coupled system of governing Partial

Differential Algebraic Equations (PDAEs) with mixed parabolic-hyperbolic character and

stiff nonlinear algebraic constraints.

In reservoir simulation, the governing equations are approximated using spatial and

temporal discretization. In space, a rich collection of discretization alternatives may be

applied, including finite-volume and finite-element methods (see for example, [4, 6, 12]).

In time, low-order implicit methods are a main staple of reservoir simulation. In implicit

methods, all variables are treated at the new time-level leading to unconditional stability

with respect to time-step size in the sense of discrete approximations. This robustness

comes at the computational expense of requiring that a large, coupled, nonlinear system of

algebraic equations be solved at each time-step; an often cited limitation of implicit methods,

particularly on massively parallel architectures (e.g. [15, 18]).

Modern simulators rely on a fixed-point iteration, such as a variant of Newton’s

method in order to solve these problems (see for example [29, 4, 26, 8]). For general problems,

Newton’s method is not guaranteed to converge, and it is known to be sensitive to the initial

guess that must be supplied. In [29], the nonlinear system is viewed as a homotopy with

time-step size as the natural parameter. A numerical continuation was proposed to solve

the system for a target time step size. In most reservoir simulators, however, the initial

guess to the iteration is the old state, amounting to a zero-order continuation prediction

step. For small time-step sizes, this may be a good approximation to the new state, and

is, therefore, thought to be a good starting point for the Newton iteration. For larger

time-steps, however, this is less likely to be the case, and the iteration may converge too

slowly, or even diverge. Given a target time-step size, the potential for slow convergence or

divergence is difficult to predict. Generally, it may depend on the local speed of transients

as well as on the structure of the underlying nonlinearity of the specific problem at hand.

This uncertainty in the efficacy of the nonlinear solver leads modern simulator developers

to adopt the computationally wasteful try-adapt-try-again strategy for time-stepping. A
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time-step size is chosen based on local accuracy considerations, and a solution attempt is

made. If the solution attempt is deemed to be a failure, heuristics are then applied to cut

the time-step and to try again.

Globalization or safeguarding strategies are universally applied in order to improve

the robustness of Newton-like methods for varying time-step size. There are several classic

approaches to safe-guarding Newton’s method, such as the line-search and trust-region al-

gorithms described in [26] and [8], for example. In these methods, the Newton direction is

scaled by a constant factor in order to locally and approximately minimize the residual norm

along the Newton direction or to maintain iterates within a region of trust. While substantial

theory and empirical evidence support the effectiveness of such globalization strategies, mod-

ern reservoir simulators seldom rely on them. In commercial reservoir simulators, heuristic

strategies are devised in order to safeguard Newton’s method. Such strategies aim to reduce

the computational cost of backtracking or trust region adaptation while retaining a similar

globalization effect. In particular, since the evaluation of the residual itself can be compu-

tationally demanding, backtracking and other iterative step length selection algorithms can

become computationally prohibitive. By specializing to the precise underlying functional

form of the nonlinear residual for the problem at hand, engineers have sought strategies to

select step lengths at a constant computational cost. Empirically, these safeguarding strate-

gies have proven their worth [29, 16, 27], providing improved robustness for a wide range

of subproblems at negligible computational cost. Serious shortcomings of reported heuristic

safeguarding strategies to date are twofold:

1. They require strict assumptions about the precise functional form of the constitutive

models. Outside of this range of applicability, these methods may fail in practice.

Generalizing these methods to growing complexity requires new analysis.

2. They are not proven to guarantee convergence for general multidimensional problems

even within the class of special physics that they are designed for.
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One goal of this thesis is to devise a general safeguarding strategy for reservoir sim-

ulation that requires no more than the ability to evaluate an element of the residual and

its scalar first and second derivatives. Moreover, this work will show that the safeguarding

strategy is sufficient to guarantee at least linear convergence. While we limit our attention

to immiscible incompressible two phase flow, we do not assume any specific functional form

for any constitutive relation.

In this chapter, the canonical form of the equations is presented, followed by a review

of the state-of-the-art in heuristic safeguarding strategies, and finally, a formal statement of

the objectives.

1.1 Immiscible, incompressible two-phase flow

1.1.1 The governing equations

We consider the flow of two phases (a wetting phase w, and a non-wetting phase n),

where the independent state variables are the two phase saturations, Sα, α ∈ {w, n}. The

phase saturations are constrained by,

Sw + Sn = 1 (1.1.1)

and

Sα ∈ [0, 1] , (1.1.2)

leading to one independent variable, 0 ≤ Sw ≤ 1. Assuming compatible auxiliary con-

ditions, the conservation equation for incompressible immiscible flow is a scalar nonlinear

conservation law, 
φ∂Sw

∂t
+∇ · uw = 0 x ∈ Ω, t ≥ 0

Sw (x, 0) = S0 (x) x ∈ Ω

Sw (x, t) = Sinj (x) x ∈ ∂Ω, t ≥ 0,

(1.1.3)

where φ represents porosity, and uw is the phase velocity that is nonlinearly dependent on
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saturation and the underlying flow field. The phase velocity is represented by Muskat’s

extension to Darcy’s law,

uw = −kkrw
µw

(∇pw + ρwg∇h) , (1.1.4)

where k is the heterogeneous permeability field, krw is the nonlinear relative permeability,

µw is viscosity, pw is the phase pressure, and ρw is the phase density. In one dimension,

equation 1.1.4 becomes

uw = −kkrw
µw

(
∂pw
∂x

+ ρwg sinα

)
, (1.1.5)

where α is the dip angle with respect to gravity. The assumption of incompressible flow

leads to the requirement that the total velocity field ut = uw + un be divergence-free. This

homogeneous total velocity field can therefore be used to eliminate the pressure dependence

within the conservation equation. In particular, with a fixed total velocity field, the fractional

flow of water is

fw =
uw
ut

(1.1.6a)

=
1 + kkro

utµo

(
∂pc
∂x
− g∆ρ sinα

)
1 + µw

µo
kro
krw

, (1.1.6b)

where pc = pn − pw is the capillary pressure. In equations 1.1.6, the relative permeability

and capillary pressures are generally nonlinear functions of saturation. This leads to the

hyperbolic conservation law form with a general nonlinear flux function,



∂
∂t
Sw + ut

∂
∂x
f (Sw) = 0 x ∈ [0, 1] , t ≥ 0

Sw (x, 0) = S0 (x) x ∈ [0, 1]

Sw (0, t) = Sinj (x) t ≥ 0.

(1.1.7)

The nonlinear flux function.

In the limiting case of horizontal displacements and neglecting capillary forces, the

5



fractional flow curve is simply,

fw =
1

1 + µw
µo

kro
krw

. (1.1.8)

Additional nonlinearity in this form of the flux function arises due to the functional depen-

dence of relative permeability on the water saturation. One of the widely used models for

relative permeability is the Corey relation [7],

krw = krw0

(
S − Swr

1− Swr − Sor

)nw
, and, (1.1.9a)

kro = kro0

(
1− S − Sor

1− Swr − Sor

)no
, (1.1.9b)

where nw and no are empirical exponents, Swr and Sor are the saturation end-points, and krw0

and kro0 are the end-point permeabilities. The choice of quadratic exponents, nw = no = 2 is

widely used. Figure 1.1 presents model relative permeability curves using the Corey model.

Figure 1.1: Corey’s model example: nw = no = 2, krw0 = 0.6, kro0 = 1, Sor = Swr = 0.

There are other relative permeability models such as the Brooks-Corey model [5],

krw = S3+2/λ
w , and,

kro = (1− Sw)2 (1− S1+2/λ
w

)
,
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where λ is an indicator of pore size distribution. Generally, relative permeability curves may

be modeled using curve fitting through experimental data, and the functional dependence

may have rich nonlinear character.

Substitution of the quadratic Corey relative permeability into the fractional flow

function leads to the so-called S-shaped flux function,

f(Sw) =
S2
w

S2
w +M (1− Sw)2 , (1.1.11)

where M = µw
µo

is the viscosity ratio. Figure 1.2 illustrates the effects of various viscosity

ratios on the S-shaped fractional flow curve in the absence of capillary and buoyancy forces,

where irreducible saturations are equal to zero.

Figure 1.2: S-shaped flux function without capillary and buoyancy forces: M = 0.5, 1, 5

1.1.2 The discrete approximation

We apply a backward Euler discretization in time, and a first-order upwind discretiza-

tion in space. On a uniform mesh with N cells, the numerical is saturation unknown at the

nth timestep and the ith cell is denoted as Sni . The numerical scheme is written as

7



Sn+1
i − Sni +

∆t

∆x

[
F
(
Sn+1
i , Sn+1

i+1

)
− F

(
Sn+1
i−1 , S

n+1
i

)]
= 0, i = 1, . . . , N (1.1.12)

In Equation 1.1.12, the timestep size is denoted as ∆t, the mesh spacing as ∆x = 1
N

,

and the numerical flux as F . Neglecting gravitational effects and assuming a positive total

velocity, we apply a Dirichlet boundary condition on the left edge of the domain, and a

second order treatment of a free boundary condition on the right. These are numerically

prescribed as the conditions,

Sn0 = Sinj, and, (1.1.13)

SnN+1 = 2SnN − SnN−1. (1.1.14)

For general fractional flow functions it is necessary to apply an entropy satisfying up-

wind condition for the numerical flux. This condition corresponds to the analytical solution

of cell-face Riemann problems. The condition applied is described by Equation 1.1.15 below.

F (a, b) =


min
a≤s≤b

fw (s) a ≤ b

max
b≤s≤a

fw (s) otherwise.
(1.1.15)

Note that for fractional flows with sonic points, the numerical flux at a cell interface

may be independent of both the left and right cell saturations when it is evaluated at the

sonic point. On the other hand, monotonically increasing or decreasing fractional flows lead

to the simplified left- and right-looking upwind schemes respectively.

1.1.3 The nonlinear implicit time stepping problem

Equations 1.1.12 along with the auxiliary conditions 1.1.13 form a coupled system of

nonlinear algebraic equations for the new saturation approximation, Sn+1
i , i = 1, . . . , N , over

the target time step, ∆t, given the initial state, Sn. This system of equations is referred to
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as the nonlinear residual system, and it has the general form,

R
(
Sn+1;Sn,∆t

)
= 0.

An implicit time-step requires the solution of this nonlinear residual system. A fixed-point

iteration is typically applied [1], and using the iteration index ν, it is written as,

[
Sn+1

]ν+1
= G

([
Sn+1

]ν
;Sn,∆t

)
, ν = 0, 1, 2... (1.1.16)

where G is a nonlinear operator. If this operator is,

G
([
Sn+1

]ν
;Sn,∆t

)
=
[
Sn+1

]ν −R′ ([Sn+1
]ν

;Sn,∆t
)−1

R
([
Sn+1

]ν
;Sn,∆t

)
,

where R′ is the Jacobian matrix of the residual, then the fixed-point iteration is Newton’s

method. In order to start this iterative process, an initial guess is required. This is typically

taken as the initial state, i.e., [
Sn+1

]0
= Sn.

In general, the time stepping solutions can exhibit complex structure including ap-

proximations to weak solutions with local discontinuity and counter-current traveling waves

as depicted in Figure 1.3.

1.1.4 Mathematical model problems under consideration

In this thesis, the focus is on two model problems of the general form in Equa-

tion 1.1.12. The first problem is a single cell problem (N = 1), and it is selected to provide

a scalar residual that incorporates the nonlinearity of the flux function. The second problem

is one-dimensional.

In both problems, we neglect the effects of capillarity and gravity. Subsequently, the

continuous initial boundary value problem is hyperbolic, and the nonlinear flux function

9



Figure 1.3: Saturation solution profiles for a 1-dimensional with (a) cocurrent flow, and (b)
counter-current gravity effects.

is monotonic and contains no sonic points. Mathematically, we will restrict our attention

to certain flux functions, f : R → R, with assumptions on their restriction to the set

I = [0, 1] ⊂ R, denoted f |I . These assumptions lead to Definition 1.1.1 that introduces

admissible flux functions.

Definition 1.1.1. A function f : R→ R is called an admissible flux function provided that:

• it is continuously differentiable; f ∈ C1 (R),

• the restriction is an injection; f |I : I → I,

• the first derivative is nonnegative and bounded above; f ′|I : I → [0, f ′max] , where

f ′max <∞, and,

• the second derivative is bounded; f ′′|I : I → [f ′′min, f
′′
max] , where f ′′min > −∞ and

f ′′max < +∞.

Model problem 1.

A limiting case is the single-cell problem that is often studied in order to motivate heuristic

reservoir simulation safeguarding methods. This model problem leads to a scalar nonlinear

residual that must be solved at each time-step. The independent variable, S ∈ I = [0, 1], is

the saturation in the cell after a time step, ∆t ≥ 0. The initial saturation before the time
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step is fixed, Sinit ∈ I, and a constant injection saturation, Sinj ∈ I, is applied. We assume

an admissible flux function holds. The nonlinear residual problem is,

R (S;Sinit,∆t) = S − Sinit + ∆t [f (S)− f (Sinj)] = 0. (1.1.17)

Since the flux function is assumed to be admissible, the derivative of the residual is

well-defined,

R′ (S;Sinit,∆t) = 1 + ∆tf ′ (S) , (1.1.18)

and is strictly positive. This implies that the Newton direction is well-defined, and the

iteration is,

Sν+1 = G (Sν) = Sν − R (Sν ;Sinit,∆t)

R′ (Sν ;Sinit,∆t)
. (1.1.19)

Remark. Since the derivative of the residual is nonzero for admissible flux functions, an

iterate of the fixed point iteration is a stationary point if and only if it is a solution of the

residual equation.

Even in the simplest of cases such as problems with quadratic relative permeability,

the exact standard Newton’s method may diverge. The residual curve and iterates for such

a case are illustrated in Figure 1.4.

Model problem 2.

The one-dimensional problem models the propagation of saturation waves under a constant

total velocity field. With an admissible flux function, cocurrent flow takes place, and rar-

efaction and shock waves travel from left to right. At each time-step, the nonlinear system

of discrete residual equations must be solved in order to obtain the independent variable

S ∈ IN = [0, 1]N . Given a fixed injection saturation, Sinj ∈ I, and an initial state, Sinit ∈ IN ,
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Figure 1.4: An example where Newton’s method diverges for a non-monotonic residual.

the residual system is defined as,

R1 (S;Sinit,∆t) = S1 − S1,init +
∆t

∆x
[f (S1)− f (Sinj)] ,

Ri (S;Sinit,∆t) = Si − Si,init +
∆t

∆x
[f (Si)− f (Si−1)] , i = 2, . . . , N.

(1.1.20)

Clearly, the system can be solved sequentially by zero-finding a sequence of scalar

problems in the order Ri = 0, i = 1, . . . , N . Alternately, a Newton method may be applied

to this nonlinear lower triangular system. The Jacobian matrix is well-defined for admissible

flux functions, and it is lower bidiagonal,

Rij
′ =


1 + ci i = j

−cj j = i− 1, i = 2, . . . , N

0 otherwise,

(1.1.21)

where the local wave speeds are defined as,

ci =
∆t

∆x
f ′ (Si) (1.1.22)
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Since the diagonal entries of the Jacobian matrix are nonzero for admissible flux functions,

the Jacobian is invertible for any S ∈ RN , and the Newton update, δ = R′−1R, is well

defined,

δ1 (S;Sinit,∆t) =
R1

1 + c1

,

δi (S;Sinit,∆t) =
Ri + ci−1δi−1

1 + ci
, i = 2, . . . , N.

(1.1.23)

Subsequently the Newton iteration is,

Sν+1 = G (Sν) = Sν − δ (Sν ;Sinit,∆t) . (1.1.24)

Remark. Since the Jacobian matrix is invertible, an iterate of the fixed point iteration is a

stationary point if and only if it is a solution of the residual system.

1.2 State-of-the-art in reservoir simulation safeguarding

Given the possibility of divergence of Newton’s method for general problems, glob-

alization or safeguarding strategies are important in order to avoid time-step cuts. Safe-

guarding strategies can be viewed as different ways to specify a diagonal matrix Λ =

diag (λ1, . . . , λN) in a safeguarded Newton iteration,

Sν+1 = Sν −ΛνR
′ (Sν)

−1
R (Sν) . (1.2.1)

The standard Newton’s method selects all diagonal weights to be one, and subse-

quently, in cases where the underlying Newton flow changes too rapidly, the iteration may

not converge.

There are several classic approaches to safe-guarding Newton’s method, such as the

line-search and trust-region algorithms described in [26] and [8], for example. In line-search

methods, all entries of the diagonal are identical (i.e. Λν = λνI), implying that the Newton

direction is simply scaled by a constant damping factor, λ. In these methods, the choice of

this damping factor is dictated by the rate of change in the residual norm along the Newton

direction or within a neighborhood about the current iterate. Algorithms for the choice of
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λ include backtracking and trust-region adaptation which require the residual vector to be

evaluated possibly several times. In reservoir simulation, the residual evaluation can involve

computationally demanding thermodynamic flash calculations, making the computational

cost of evaluating the residual non-negligible.

In commercial reservoir simulators, heuristic strategies have been devised in order to

safeguard Newton’s method. Such strategies select the diagonal scaling entries on a cell-

by-cell basis, using physical arguments. In practice, these heuristics are known to improve

convergence dramatically (larger time step sizes converge from the same initial state at a

faster rate than classical methods). There is a common underlying hypothesis shared by

the most commonly employed heuristics. The hypothesis may be motivated by the shape of

common fractional flow curves (e.g. Figure 1.2). The hypothesis is that the nonlinearity of

the residual is in some sense dictated by the structure of the flux function in each cell. That is,

suppose that a nonlinear Gauss-Seidel iteration is applied to the residual system as a whole.

Then for each Gauss-Seidel iteration, the residual in each cell must be solved sequentially.

To solve each of these single cell nonlinear residuals, we may apply a scalar Newton process,

obtaining the saturation in the current single cell, assuming that all other cell saturations

are known. These scalar Newton iterations need to be safe-guarded by some scalar damping

protocol ([19]). If this protocol assures cell-wise convergence of a Newton iteration, then the

outer Gauss-Seidel iteration at least has a hope of converging. The hypothesis is that if the

same scalar damping protocols are also applied on saturation variables, cell-by-cell, in the

context of a system Newton updates, then that too is more likely to converge. Inspecting

Figure 1.2, we can deduce that saturations around end-points and inflection points produce

particularly sensitive Newton directions. The hypothesis is to apply a cell-by-cell (diagonal)

damping factors to limit large changes around such physically sensitive boundaries.

The following is a review of heuristic local damping protocols for Newton methods in

reservoir simulation:

1. The Modified Eclipse Appleyard (MEA) safeguarding heuristic limits the Newton up-

date in every grid cell to a maximum magnitude of 0.2 ([29, 13, 24]). This ad hoc choice
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of λνi is the result of extensive empirical tuning that was conducted by the developers

of the Eclipse reservoir simulator [13]. It was observed that since saturation can vary

between 0 and 1 that limiting any Newton update to 0.2 yields improved convergence

for a vast body of simulations conducted using the popular commercial code. While

effective for the typical case, it is easy to find examples where the heuristic fails. More-

over, for growing complexity, such as compositional models, the heuristic is not useful.

On the other hand, the computational cost of calculating the local damping factors is

negligible.

2. An improved heuristic was proposed by specializing to problems with an S-shaped flux

function [16]. The authors propose a cell-based choice of λνi such that Newton updates

that cross the inflection point of the flux function are damped to a small neighbor-

hood about the inflection point. Through empirical testing, this strategy proved to

perform very well for problems with no gravity or capillarity effects. The strategy was

empirically shown to be more robust than the MEA strategy, but it is specific to the

S-shaped flux function and requires knowledge of the inflection point location.

3. More recently, a trust-region based strategy was proposed to account for buoyancy

and capillary forces [27]. The proposed scheme accommodates sonic points and two

inflection points as in Figure 1.5. It is a direct extension of [16] to flux functions with

two inflection points and one sonic point (maximizer or minimizer).

4. The trust region idea was later extended to analyze jumps across inflection manifolds

in the discrete flux function (Equation 1.1.15). The discrete flux function incorporates

the upwinding condition to evaluate the fractional flow at either saturation on either

side of a grid cell face. While this heuristic improves robustness and efficiency even

further, it requires a multidimensional analysis of the structure of the discrete flux
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function in a pre-processing step. It is not possible to automate this to general flux

functions with arbitrary structure.

Figure 1.5: Fractional flow curve with one sonic point and two inflection points.

A common denominator amongst these heuristic local damping safeguards is that

they alter the update direction as well as its magnitude. They do so by scaling the update

element by element such that some local measure of fitness is satisfied. When they work,

empirical evidence shows that they are extremely efficient. On the other hand, they are

crafted for very specific flux functions with limited complexity. Another observation is that

while some safeguards may be proven theoretically to guarantee convergence of Newton’s

method for the scalar subproblem, there is no theoretical proof that they should improve

convergence on Newton’s method for the system and counter-examples are abundant.

In practice, the flux function may be any general nonlinear function and it may have

considerable structure (e.g. Figure 1.6). There is value in simple safeguarding strategies

that rely on less information about the flux function and that simultaneously can be shown

to guarantee certain convergence properties.

1.3 Objectives and outline

The objectives of this thesis are to devise simple damping strategies that will guar-

antee at least theoretical linear convergence. The damping strategies will not assume any

specific functional form for the flux function beyond admissibility. The key idea is to analyze

the Fréchet derivative of the fixed point mapping and to select a damping factor such that
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Figure 1.6: Possible fractional flow curve with nine inflection points.

the mapping is contractive and into. The calculation of the damping factors will require

negligible constant computational cost.

In Chapter 2, a fixed damping strategy is devised in order to guarantee at least

linear convergence for general problems. The damping is fixed because a constant Λ is

predetermined and is used for all subsequent iterations. This is generalized to systems of

equations in the infinity induced operator norm. Chapter 3 approaches the development of a

dynamic damping strategy that weakens the conditions developed in Chapter 2. The result

is a less conservative safeguard that varies with iteration number, Λν . Finally, Chapter 4

discusses the potential for future work and implications of this thesis on modern implicit

reservoir simulation.
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CHAPTER 2

FIXED DAMPING STRATEGY

The residual equations for a particular time step (see for example, Equations 1.1.17

and 1.1.20) are the discrete approximation to an underlying Initial Boundary Value Problem

(IBVP). An assumption of well-posedness of the underlying IBVP guarantees the existence

and uniqueness of solutions to the IBVP. The implicit discretization is an accurate approx-

imation in space and time, and this fact can be used to show the existence of a solution to

the discrete residual equation in the asymptotic sense of a mesh refinement path (see for

example, [28, 10]). Uniqueness of the discrete solution is not generally guaranteed, how-

ever. In [20], both existence and uniqueness are demonstrated specifically for problems with

phase-based upwinding and monotone flux functions. For general flux functions, it is easy

to construct problems where the discrete residual has multiple solutions in RN , and in this

work, we consider any such solution as admissible since the corresponding discrete approxi-

mation is mass conservative. We will assume existence of solutions to both model problems

under consideration, and a secondary outcome of this chapter is a demonstration that the

solution is unique within the hypercube I = [0, 1]N .

The focus of this chapter is to devise a fixed damping strategy for Newton’s method.

In particular, a single diagonal damping factor, λ (Sinit,∆t), is to be determined for each

time step such that the iteration,

S1 = Sinit, and, (2.0.1)

Sν+1 = Sν − λ (Sinit,∆t)R
′ (Sν ;Sinit,∆t)

−1
R (Sν ;Sinit,∆t) , ν = 1, 2, . . . (2.0.2)

converges to a solution, S∗. Moreover, the convergence rate will be at least linear. Since
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λ (S0,∆t) is fixed and does not vary with ν, we refer to this as a fixed damping strategy.

The basic idea is to select λ such that the conditions of a Contraction Mapping Theorem are

met. We proceed by reviewing established global results on the convergence of fixed point

iterations, and then, these results are applied to model problems 1 and 2.

2.1 Preliminary results

We consider the general fixed point iteration,

Sν+1 = G (Sν) , ν = 1, 2, . . . , (2.1.1)

where the map G : D ⊆ RN → RN is a general generating function.

Theorem 2.1.1 (Contraction-Mapping Theorem [17, 25]). Suppose that G : D ⊆ RN → RN

maps a closed set D0 ⊂ D into itself, and that there exists an 0 < α < 1 such that

‖G (x)−G (y)‖ < α ‖x− y‖ , ∀x, y ∈ D0.

Then for any S0 ∈ D0, the sequence 2.1.1 converges to the unique fixed point S∗ of G in D0,

and the following error estimate holds,

‖S∗ − Sν‖ ≤ αν

1− α
∥∥S1 − S0

∥∥ , ν = 1, 2, . . . .

Proof. Suppose that x∗, y∗ ∈ D0 are any two fixed points, then,

‖x∗ − y∗‖ ≤ ‖G (x∗)−G (y∗)‖ ≤ α ‖x∗ − y∗‖ , (2.1.2)

implying that x∗ = y∗ since, by assumption, 0 < α < 1. Next, consider any x0 ∈ D0. The

subsequent sequence {xν} of iteration 2.1.1 is well-defined and is contained in D0 since by

assumption, G (D0) ⊆ D0. We will show that any such sequence is a Cauchy sequence, and

by the completeness of D0 which is a closed subset of RN , the sequence must converge to a
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point within D0. Since xν+1 = G (xν) = G2xν−1 for any ν ≥ 1, we have that,

∥∥xν+1 − xν
∥∥ =

∥∥Gν
(
x1
)
−Gν

(
x0
)∥∥ ≤ αν

∥∥x1 − x0
∥∥ , (2.1.3)

and subsequently, using the triangle inequality, and for any n ≥ m ≥ 0, we have,

‖xn − xm‖ =
∥∥Gn

(
x0
)
−Gm

(
x0
)∥∥

≤ αm
∥∥Gn−m (x0

)
− x0

∥∥
≤ αm

(∥∥Gn−m (x0
)
−Gn−m−1

(
x0
)∥∥+ . . .+

∥∥G (x0
)
− x0

∥∥)
≤ αm

(
n−m−1∑
ν=0

αν

)∥∥x1 − x0
∥∥

≤ αm

(
∞∑
ν=0

αν

)∥∥x1 − x0
∥∥

Since 0 < α < 1, the power series converges, and we arrive at the inequality,

‖xn − xm‖ ≤ αm

1− α
∥∥x1 − x0

∥∥ , n ≥ m ≥ 0, (2.1.4)

which directly shows that the sequence is a Cauchy sequence, and that it converges to a

point x∗ ∈ D0.

By continuity, x∗ must also be a fixed point since,

G (x∗) = G
(

lim
ν→∞

xν
)

= lim
ν→∞

G (xν) = lim
ν→∞

xν+1 = x∗.

Finally, the error estimate follows directly from Equation 2.1.4 with n→∞.

Remark. The contraction constant α in Theorem 2.1.1 is clearly norm-dependent. A mapping

may satisfy the assumptions of the theorem in one norm but may not in another.

A corollary to Theorem 2.1.1 provides a characterization for the number of iterations

that are required in order to reduce the error between iterates and the fixed point to a certain

tolerance. The result is a direct application of the a priori error estimate that is provided
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by the contraction-mapping theorem.

Corollary 2.1.1.1. Consider iteration 2.1.1, and suppose that G satisfies the assumptions

of Theorem 2.1.1 with the unique fixed-point S∗. Fix a convergence tolerance ε > 0. Then

for any nonstationary starting point, S0, such that ‖S1 − S0‖ > ε > 0, the error satisfies,

‖Sν − S∗‖ ≤ ε,

provided that,

ν ≥
⌈

1

log (α)

(
log

(
ε

‖S1 − S0‖

)
+ log (1− α)

)⌉
.

Proof. By the error estimate provided by Theorem 2.1.1, the error at iteration m > 1 is,

‖em‖ = ‖Sm − S∗‖ ≤ αm

1− α
∥∥S1 − S0

∥∥ ,
and since 0 < α < 1, the error is strictly decreasing with iteration number; i.e., ‖em+1‖ <

‖em‖. Let,

n =
1

log (α)

(
log

(
ε

‖S1 − S0‖

)
+ log (1− α)

)
= logα

(
ε (1− α)

‖S1 − S0‖

)

and n∗ = dne ≥ n. Then,

‖en∗‖ ≤ ε

and for each ν ≥ n∗, we have that ‖eν‖ ≤ ε.

The Taylor remainder and mean value theorems supply a characterization for the

contraction constant in Theorem 2.1.1 in terms of the operator norm of the Fréchet derivative.

This is a useful result to demonstrate that a fixed point mapping is a contraction.

Theorem 2.1.2 ([25]). Suppose that G : D ⊆ RN → RN is a continuously differentiable
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map, i.e. G ∈ C1 (D), and that D is a convex set. Then if in any p-norm,

sup
x∈D
‖G′ (x)‖p = α < 1,

holds, then for every x, y ∈ D,

‖G (x)−G (y)‖p ≤ α ‖x− y‖p

Proof. Let x, y ∈ D, and consider the line z = x + t (y − x), for t ∈ [0, 1]. By the

convexity of D, we must have that z ∈ D, and subsequently, we can define the map,

H (t) = G (x+ t (y − x)) for t ∈ [0, 1]. Since G is differentiable, and using the chain rule, we

have that,

H ′ (t) = G′ (x+ t (y − x)) (y − x) ,

where G′ is the Jacobian matrix. Moreover, by the fundamental theorem of calculus, we

have,

G (y)−G (x) = H (1)−H (0) =

∫ 1

0

H ′ (t) dt =

∫ 1

0

G′ (x+ t (y − x)) (y − x).

By the triangle inequality, we have that,

‖G (y)−G (x)‖p =

∥∥∥∥∫ 1

0

G′ (x+ t (y − x)) (y − x)dt

∥∥∥∥
p

≤
∫ 1

0

‖G′ (x+ t (y − x)) (y − x)‖pdt

≤
∫ 1

0

‖G′ (x+ t (y − x))‖p dt ‖(y − x)‖p

≤ α ‖(y − x)‖p

Remark. The result of Theorem 2.1.2 carries through to the scalar univariate case directly.
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Scalar problems will require the supremum of the absolute value of the scalar derivative as

the contraction constant.

We now consider the nonlinear algebraic problem

R (S) = 0, (2.1.5)

where R : D ⊆ RN → RN is continuously differentiable. Moreover, we assume that for

S ∈ D the Frèchet derivative R′ (S) is invertible. Given S0 ∈ D, the modified (damped)

Newton iteration is,

Sν+1 = Sν − Λδ (Sν) , ν = 1, 2, . . . , (2.1.6)

where

δ (S) = R′ (S)
−1
R (S) ,

is the Newton update direction, and Λ = diag (λ1, . . . , λN) is a fixed diagonal weighting.

Iteration 2.1.6 can be regarded as a family of fixed point iterations parameterized by Λ,

Sν+1 = GΛ (Sν) = Sν − Λδ (Sν) , ν = 1, 2, . . . . (2.1.7)

Next, we will apply the contraction-mapping theorem and its corollaries to the damped

Newton iteration. We first provide a characterization of fixed points in terms of solutions to

the nonlinear system.

Lemma 2.1.3. Let R : D ⊆ RN → RN be continuously differentiable with Frèchet derivative

R′ (S) that is invertible for S ∈ D. Suppose that G (D0) ⊆ D0 and D0 ⊆ D. Then itera-

tion 2.1.7 is well-defined, and S∗ ∈ D0 is a stationary point of the iteration if and only if it

is a solution to problem 2.1.5.

Proof. Suppose that S∗ ∈ D is a solution to problem 2.1.5. Then,

GΛ (S∗) = S∗ − ΛR′ (S∗)
−1
R (S∗) = S∗,
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implying that it is a fixed point. Next, suppose that GΛ (S∗) = S∗, then,

0 = S∗ −GΛ (S∗) = ΛR′ (S∗)
−1
R (S∗) .

Since Λ and R′ (S∗) are invertible, we must have that R (S∗) = 0.

Theorem 2.1.4. Let D0 ⊂ RN be closed and convex. Suppose that R ∈ C1 (D0) and

that R′ is invertible and continuously differentiable at each S ∈ D0. If there is a Λ =

diag (λ1, . . . , λN) with 0 < λi < 1 for i = 1, . . . , N such that for any S0 ∈ D0,

S0 − ΛR′
(
S0
)−1

R
(
S0
)

= S0 − Λδ
(
S0
)
∈ D0,

and,

0 < α = sup
S∈D0

‖I − Λδ′ (S)‖p < 1,

then,

(a) There is a unique zero S∗ ∈ D0 such that R (S∗) = 0,

(b) The damped Newton iteration (2.1.6) converges in the p-norm to S∗ from any starting

point in D0, and,

(c) The following a priori error estimate holds for ν > 1 and any nonstationary S0 ∈ D0,

‖S∗ − Sν‖p ≤
αν

1− α
∥∥S1 − S0

∥∥
p
.

Proof. By direct application of Theorem 2.1.2, the fixed point iteration is into and contrac-

tive. This leads to an application of Theorem 2.1.1. Finally, Lemma 2.1.3 provides the link

between the fixed point and the solution of the algebraic system.

The objective of this chapter will be to show that it is possible to select Λ such that

the conditions of Theorem 2.1.4 are fulfilled. In particular, for model problems 1 and 2, we

first define a closed and convex set in Rn that is physically meaningful for saturation. Then,
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we will select, or show that it is possible to select, Λ such that the mapping is both into and

contractive. There may be several choices for Λ that achieve this, and the implications on

optimality and convergence speed are discussed next.

2.1.1 Optimal choice for Λ

Before we move on to the applications to model problems 1 and 2, one matter should

be addressed. There may be many Λ that could satisfy the conditions of Theorem 2.1.4; is

there however an optimal choice? In order to answer this question, we must first define the

objective or measure of optimality.

One measure for example, may be to attempt to minimize the convergence rate ratio,

eν

eν−1
=
‖Sν − S∗‖
‖Sν−1 − S∗‖

≤ α (Λ) < 1,

by minimizing the upper-bound contraction constant, α. While minimizing α (Λ) may be

computationally tractable, the utility of this objective is rather limited in the sense that it

is not sufficient to guarantee that the smallest convergence ratio will actually be attained.

Another measure may be to compare the errors eν1 and eν2 at the ν-th iterate cor-

responding to two contractive iterations each with Λ1 and Λ2 respectively, that are both

initiated from the same starting point, S0. Moreover, we can assume that both choices sat-

isfy the conditions of Theorem 2.1.4 and that Λ1 6= Λ2. If a sufficient condition is enforced

to ensure that for arbitrary ν, eν1 ≤ eν2, then iteration 1 is more optimal. It is difficult

to provide a means to enforce such a condition however without further assumptions on

the particular two sequences of Newton updates, δk1 and δk2 for k = 0, . . . , ν. Suppose that

M = maxk=0,...,ν

∥∥δk1,2∥∥ and m = mink=0,...,ν

∥∥δk1,2∥∥. Then the reverse triangle inequality

provides an error lower-bound;
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eν2 ≥ ‖Sν1 − Sν2‖ − eν1

≥
∥∥Sν1 − S0

∥∥− ∥∥Sν2 − S0
∥∥− eν1

≥ ν (‖Λ1‖m− ‖Λ2‖M)− eν1.

But by the contractive properties, an upper bound on the error can be derived as,

eν1 ≤
αν1

1− α1

‖Λ1‖M,

and subsequently, if,

αν1
1− α1

‖Λ1‖M
‖Λ1‖m− ‖Λ2‖M

≥ ν

2
,

then eν1 ≤ eν2. While such a condition is of very limited use in practice, it motivates that the

better choice of Λ is the one that maximizes ‖Λ‖ such that α < 1.

2.2 Single cell problem

In Section 1.1.4, the notion of an admissible flux function, f , was introduced (Defi-

nition 1.1.1), and model problems 1 and 2 were described. Model problem 1 is based on the

implicit discretization of the governing equation for incompressible two-phase flow into and

out of a single block in the absence of gravity. The independent variable is saturation, S,

which is physically meaningful in the interval I = [0, 1]. The task of solving a time-step for

the saturation amounts to determining a zero of the scalar problem,

R (S) = S − Sinit + ∆t [f (S)− f (Sinj)] = 0, (2.2.1)

where Sinit, Sinj ∈ I, and ∆t ≥ 0 are fixed parameters. The objective is to design a fixed

26



damping iteration of the form,

Sν = G
(
Sν−1

)
= Sν−1 − λ R (Sν−1)

R′ (Sν−1)
,

where the damping factor is bounded as 0 < λ ≤ 1, and the iteration satisfies the assumptions

of Theorem 2.1.4. The theorem requires essentially three conditions:

1. Differentiability of the residual, existence of the inverse of the derivative, and differen-

tiability of the inverse of the derivative. We have addressed these issues by introducing

Definition 1.1.1 for admissible flux functions and we discussed how it takes care of

these matters in Chapter 1.

2. That the Newton iterates remain within a closed convex set. In the remainder of this

section, the set of concern is I = [0, 1], and we will demonstrate additional conditions

in terms of the flux function itself so that the Newton map is into, and G (I) ⊆ I.

3. Finally, it is required that the map be a contraction. We will show that under certain

conditions on the flux function, it is possible to select a damping factor λ such that

this is the case.

2.2.1 Conditions for the into-property of the Newton map

We introduce Lemma 2.2.1 that is applicable to any scalar fixed point iteration in

the set I ⊂ R. Essentially, if the map is contractive and maps the boundary of I into itself,

then the map is into I.

Lemma 2.2.1. Suppose that G : R → R and that the restriction G‖I is continuously

differentiable. If,

1. For all S ∈ I, |G′ (S)| ≤ α ≤ 1

2. There exists a b1 ∈ R such that α |b1|+ |G (b1)| ≤ 1− α

3. There exists a b2 ∈ R such that α |1− b2|+ |G (b2)− 1| ≤ 1− α
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then G (I) ⊆ I.

Proof. Let x ∈ [0, 1], then by the triangle inequality and assumptions 1 and 2 of the claim,

|G (x)| = |G (x)− 0|

≤ |G (x)−G (b1)|+ |G (b1)− 0|

≤ α |x− b1|+ |G (b1)|

≤ α |x− 0|+ α |b1 − 0|+ |G (b1)|

≤ α (1 + |b1|) + |G (b1)|

≤ 1

On the other hand, by the triangle inequality and assumptions 1 and 3, we have,

|G (x)− 1| ≤ |G (x)−G (b2)|+ |G (b2)− 1|

≤ α |x− b2|+ |G (b2)− 1|

≤ α |x− 1|+ α |b2 − 1|+ |G (b2)− 1|

≤ α (1 + |b2 − 1|) + |G (b2)− 1|

≤ 1

Since |G (x)| ≤ 1 and |G (x)− 1| ≤ 1, we must have that 0 ≤ G (x) ≤ 1.

Remark. The conditions of Lemma 2.2.1 may be specialized into conditions concerning the

flux function itself as well as the contraction constant. Since the conditions do not necessarily

require that they hold for points within I, the extension of the flux function from I to R

may be designed to satisfy the conditions given α itself.

2.2.2 Conditions for the existence of a suitable damping factor

The contractive property is key to the design of an iteration that satisfies the con-

ditions of Theorem 2.1.4. The objective for given Sinit, Sinj ∈ I and ∆t ≥ 0 is to select a
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damping parameter 0 < λ ≤ 1 such that the iteration is contractive. Before addressing the

choice of λ, the conditions for the existence of such a parameter must be studied. According

to Theorem 2.1.2, and considering the convex domain I, it is sufficient to show that λ can

be chosen such that,

sup
S∈I
|G′ (S)| = α < 1

In the particular case of model problem 1, the admissibility of the flux function assures the

differentiability of the iteration mapping. Subsequently, we can write,

G′ (S) = 1− λδ′ (S)

= 1− λ
[
1− R (S)R′′ (S)

(R′ (S))2

]
= 1− λ

[
1− ∆t (S − Sinit + ∆t (f (S)− f (Sinj))) f

′′ (S)

(1 + ∆tf ′ (S))2

]

The objective then is to find the largest λ > 0 such that

sup
S∈I
|1− λ [1− γ (S)]| = α < 1,

where,

γ (S) =
R (S)R′′ (S)

(R′ (S))2 .

The particular form of the derivative of the iteration mapping makes it amenable to further

analysis. The following results lead to a characterisation for the existence and choice of λ

for model problem 1.

Lemma 2.2.2. Let λ > 0 and suppose that γ : I → R is continuous and bounded above and

below as,

γmax = sup
S∈I

γ (S),

and,

γmin = inf
S∈I

γ (S).
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Then,

sup
S∈I
|1− λ [1− γ (S)]| = max {|1− λ [1− γmax]| , |1− λ [1− γmin]|} .

Proof. By the assumptions of the lemma, γ : I → J = [γmin, γmax], and subsequently,

sup
S∈I
|1− λ [1− γ (S)]| = sup

β∈J
|1− λ [1− β]| .

By definition,

|1− λ (1− β)| =


−1 + λ (1− β) β < 1− 1

λ

1− λ (1− β) β ≥ 1− 1
λ

,

First, suppose that 1− 1
λ
< γmin, then clearly,

sup
β∈J
|1− λ (1− β)| = sup

β∈J
1− λ (1− β)

= 1− λ (1− γmax)

Next, suppose that γmax > 1− 1
λ
, then clearly,

sup
β∈J
|1− λ (1− β)| = sup

β∈J
−1 + λ (1− β)

= −1 + λ (1− γmin)

Finally, if γmax ≥ 1− 1
λ
≥ γmin, we can select J1 =

[
γmin, 1− 1

λ

]
and J2 =

[
1− 1

λ
, γmax

]
, so

that J = J1 ∪ J2. Moreover, we have that,

sup
β∈J
|1− λ [1− β]| = max

{
sup
β∈J1

|1− λ [1− β]| , sup
β∈J2

|1− λ [1− β]|
}
.

and, since λ > 0,

sup
β∈J1

|1− λ [1− β]| = |1− λ [1− γmin]| ,
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and,

sup
β∈J2

|1− λ [1− β]| = |1− λ [1− γmax]| .

Lemma 2.2.3. There exists a λ > 0 such that,

|1− λ (1− β)| < 1,

if and only if

β < 1.

Proof. Suppose that β < 0, then,

|1− λ (1− β)| = |1− λ (1 + |β|)|

< 1

for any 2
1+|β| > λ > 0. On the other hand, if 1 > β ≥ 0, then λ (1− β) > 0 and,

|1− λ (1− β)| < 1,

for any 2
1+β

> λ > 0, In the converse direction, suppose that there exists a λ > 0 such that,

1 > |1− λ (1− β)|

Then, after squaring the two sides and rearranging, we must have that

0 > (1− β) [λ (1− β)− 2] ,

which can only happen if either β > 1 and β < 1 − 2
λ
< 1 which is a contradiction, or if

1 > β > 1− 2
λ
. Hence, we must have that β < 1.
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Theorem 2.2.4. Suppose that f : I → I is an admissible flux function. There exists a λ > 0

such that,

sup
S∈I
|1− λ [1− γ (S)]| = α < 1,

if and only if

γmax =
∆t (1− Sinit + ∆t (fmax − f (Sinj))) f

′′
max

(1 + ∆tf ′min)2 < 1.

Proof. Combining the two lemmas, we must have that γmin ≤ γmax < 1 if and only if

α < 1.

2.2.3 Computational Examples

This section is aimed at analysis and comparison of standard, global damping based

and Eclipse Appleyard Newton’s methods for different cases according to parameters selected.

The new method, called global damping based Newton’s method, due to the fact that the

damping factor calculated for the first iteration will be used throughout all iterations. It is

important to visualize and analyze first and second order derivative curves for S-shaped flux

function, which helps to ensure that derivatives of the residual equation are continuous as

well. Analytical experssion of the first and second derivatives of flux functions are given by

equations 2.2.2 and depicted in Figure 1.2 are shown in Figure 2.1. State-of-the-art methods

rely their analysis on heuristic observations according to S-shaped curve and its derivatives.

For example, the trust region method applies chops of saturation values to the inflection

point, where the second order derivative is equal to zero.

∂f

∂S
=

2MS(1− S)

(M +MS2 + S2 − 2MS)2 (2.2.2a)

∂2f

∂S2
=

2M(M − 3MS2 + 2MS3 − 3S2 + 2S3)

(M +MS2 + S2 − 2MS)3 (2.2.2b)

It should be noted, that failure of the Newton based solvers is determined when the

number of nonlinear iterations reaches the maximum, which we set to one thousand. Such

a high number has been chosen in order to capture even very slow, but still convergent
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Figure 2.1: First and Second order derivatives of various M numbers.
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sequences. The test cases below are based on analysis of errors with variable time step sizes

and viscosity ratio M . The first problem statement follows:

Case 1: Sin = 0, Sguess = 0, ∆t = 1.1 and the flux function parameter M = 1.

As we can from the Figure 2.2, the error, which is defined as the difference of the solution

Figure 2.2: Errors for safeguarded and standard Newton’s methods for Case 1.

Figure 2.3: Updates in saturation while bouncing.

from the iteration value, is oscillating from the first iterations for standard Newton’s method.

This may happen for particular cases, as presented in Figure 2.3. The number of nonlinear

iterations reached the maximum number for the standard Newton’s method, but only the first

fifty of them are depicted, since the rest are identical. If we analyze the contraction factor for
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the standard method from Figure 2.4, it is shown that all values less than 0.3 and higher than

0.7 are not in the contractive region, which means that if during iterations, saturation value

will be equal to any of these values, convergence is not guaranteed by the theorem. However,

the theorem considers the sufficient, but not necessary condition, meaning that convergence

still can be obtained. Calculated damping factor value for the global method is equal to 0.56,

which brings all saturation values to the contraction region, hence convergence is obtained.

Comparison with Eclipse Appleyard method indicates that both methods converge to the

same solution. However, the number of iterations performed by EA method is less. Fluid

Figure 2.4: Comparison of standard and global damping based Newton methods’ contraction
factors (Case 1).

properties have always been crucial in recovery processes and flow characterization. So far,

oil viscosity, represented in the flux function via M, has been equal to µoil = µwater = 1cp.

But there are many other types of crude oil worldwide, where viscosity is either less or

much higher than water viscosity. As an important concept, lets compare viscosity ratio

influence on standard, global damping based and EA Newton methods’ performance, where
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flux function’s derivatives reasonably change their shapes (Figures 2.1).

Case 2: Sin = 0, Sguess = 0, ∆t = 1.2 and M = 0.5

Number of nonlinear iterations for different method for this case is represented on the

Figure 2.5: Errors for safeguarded and standard Newton’s methods for Case 2.

Figure 2.5. As we can see from this figure, oscillation for the standard method’s error

estimation leads to divergence, while safeguarding methods helps to avoid this issue. Change

in viscosity ratio has a noticeable impact on contraction factor number α. If we compare

Figures 2.4 and 2.6, curve shapes differ significantly. Lower viscosity ratio M in the problem

increases the maximum number of contraction factor value, which makes it difficult to satisfy

the condition of the theorem. The standard method failed to converge, while damping based

method shows robustness and accuracy in comparison with it. Calculated damping factor

value is equal to 0.29, which is a strict chopping strategy.

Case 3: Sin = 0, Sguess = 0, ∆t = 1.7 and M = 5.0

Relationship between number of nonlinear iterations and error decrease remains the same

as in previous examples (Figure 2.7). This test case considers fast changes in the system,

where water front moves with constant higher velocity. Behavior of safeguarded methods

remains the same: global method confirms robustness and accuracy, while standard method

does not (Figure 2.8). Chopping strategy for this case is even more conservative, which leads

to small damping factor (λ = 0.1).

As we can see from the test cases for single cell problems, errors for the global damping
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Figure 2.6: Contraction mapping for standard and global damping based methods (Case 2).

Figure 2.7: Errors for safeguarded and standard Newton’s methods for Case 3.
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Figure 2.8: Contraction mapping for standard and damping based methods (Case 3).

based method always decrease, which leads to unconditional convergence of the method.

2.3 Multi cell problem

2.3.1 Analytical approach and problem statement

In the previous section the contraction mapping theorem was investigated and applied

to a single cell problem, where the damping factor of the Newton update has been analyti-

cally calculated in order to satisfy sufficient condition for guaranteed convergence. Some of

the heuristic safeguarding nonlinear solvers apply single cell estimations to three dimensional

problems, which is unlikely to be a good assumption. This work avoids such assumptions,

since analysis is based on theoretical approaches only, which becomes more complicated for

a one dimensional problem. Performance of damping based Newton’s method for the sin-

gle cell problem demonstrates valuable features of nonlinear solvers, such as robustness and

accuracy. Efficiency of the method highly depends on the problem’s complexity. The aim

is to keep these features for the one dimensional problem as well by applying contraction

mapping theorem. The key difference for one dimensional problems is that the contraction
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mapping theorem will be investigated in vector spaces. A numerical scheme for global damp-

ing based Newton’s method will be developed and implemented in order to compare results

with standard and state-of-the-art safeguarded Newton’s methods.

Recall that G is a nonlinear operator generating a sequence of iterations using New-

ton’s method for problems investigated in this article. The purpose of the one dimensional

approach remains the same, as for a single cell problem: to find such a damping factor λ,

which satisfies Equation 2.3.1. For multi cell problem, the equation is simply

‖G(x)−G(y)‖ 6 α‖x− y‖. (2.3.1)

Hence, the contraction factor α can be calculated from the following equation:

α = sup
x 6=y

‖G(x)−G(y)‖
‖x− y‖

(2.3.2a)

= sup
x∈[0,1]

‖G′ (x) ‖. (2.3.2b)

where G′ is a matrix. Equation 2.3.2b shows, that we need to estimate the first order

derivative of the linear operator G, i.e. calculate the norm of G′. As it was mentioned

earlier, there are many different vector space norms, but we use infinity norm. The reason

for this is as follows: we estimate contraction factor numbers for each grid cell, which means

that different damping factors will be calculated for every cell separately. Hence, it is very

important to make sure that all contraction factor numbers are below one. Application of

the infinity norm allows us to consider each row, which is not possible, for example, for

1-norm, where the maximum absolute column sum of the matrix considered. Operator G
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for one dimensional problem is represents a vector, defined as following:

G =



S1

S2

...

Si


−



λ1

λ2

. . .

λi





∂R1

∂S1

∂R1

∂S2
. . . ∂R1

∂Si

∂R2

∂S1

∂R2

∂S2
. . . ∂R2

∂Si

...
...

. . .
...

∂Ri
∂S1

∂Ri
∂S2

. . . ∂Ri
∂Si



−1 

R1

R2

...

Ri


(2.3.3)

where the residual vector is represented as



R1

R2

...

Ri


=



Sn+1
1 − Sn1 + ∆t

∆x
[f(S1)− f(Sinj)]

Sn+1
2 − Sn2 + ∆t

∆x
[f(S2)− f(S1)]

...

Sn+1
i − Sni + ∆t

∆x
[f(Si)− f(Si−1)]


In order to estimate the contraction factor α, we need to evaluate derivatives of the operator

with respect to saturation, which leads to creation of matrix from the vector shown in

Equation 2.3.3.

G′ =



∂
∂S1

[S1 − λ1 (J−1R)1] ∂
∂S2

[S1 − λ1 (J−1R)1] . . . ∂
∂Si

[S1 − λ1 (J−1R)1]

∂
∂S1

[S2 − λ2 (J−1R)2] ∂
∂S2

[S2 − λ2 (J−1R)2] . . . ∂
∂Si

[S2 − λ2 (J−1R)2]

...
...

. . .
...

∂
∂S1

[Si − λi (J−1R)i]
∂
∂S2

[Si − λi (J−1R)i] . . . ∂
∂Si

[Si − λi (J−1R)i]


(2.3.4)

In order to construct the sequence for one dimensional problem with N > 3, we introduce

following notations with cell number i:

ai = 1− ci
(1 + ci)2

Ri −
ci−1c

′
iδi

(1 + ci)2
, (2.3.5)

bi = − ci−1

1 + ci
+
c′i−1δi
1 + ci

+
ci−1

1 + ci
ai−1. (2.3.6)

For calculation of infinity norm of the matrix for general 1D problem, which gives the con-
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traction factor α, let us consider example with four grid cells:

G′ =



1− λ1a1 0 0 0

−λ2b1 1− λ2a2 0 0

−λ3

(
c2

1+c3
b1

)
−λ3b2 1− λ3a3 0

−λ4

(
c3

1+c4

c2
1+c3

b1

)
−λ4

(
c3

1+c4
b2

)
−λ4b3 1− λ4a4


(2.3.7)

The main diagonal can formulate one type of sequence, while the lower bidiagonal formulates

another sequence consisting other additional parameters. The remaining part of the lower

triangular matrix formulates multiplication sequence included in the sequence of summation.

Infinity norm of a matrix, used for calculations, is described in Meyer(2001) [22], as following:

‖G′‖∞ = max
1≤j≤i

l∑
k=1

|G′jk|, (2.3.8)

and particularly for cell number i >3 can be formulated as:

‖G′‖∞ = sup
S∈D0

[
λi

(
i−2∑
j=1

∣∣∣∣∣−bj
∏i−1

k=j+1 ck∏i
m=j+2 1 + cm

∣∣∣∣∣+ |bi|

)
+ |1− λiai|

]
(2.3.9)

which is simply the maximum absolute value of the row sum of the matrix. In other words,

the objective is to find such damping factors λ, where the maximum absolute row sum value

is less than one, which means that all row sum values should be below unity as well. Hence,

the entire system satisfies the contraction mapping principle. In the next section, a two

cell problem is implemented and compared with standard and other safeguarding nonlinear

solvers.

2.3.2 Two cell example and comparison with state-of-the-art nonlinear

solvers

In order to test the one dimensional problem, a two cell case has been generated with

water injection on the left boundary of the first cell, as on the Figure 2.9. As in the previous
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cases, capillary and buoyancy forces are neglected.

Figure 2.9: One dimensional problem represented by two cells.

G =

S1

S2

−
λ1 0

0 λ2


1− ∆t

∆x
f ′(S1) 0

−∆t
∆x
f ′(S1) 1− ∆t

∆x
f ′(S2)


−1 Sn+1

1 − Sn1 + ∆t
∆x

[f(S1)− f(Sinj)]

Sn+1
2 − Sn2 + ∆t

∆x
[f(S2)− f(S1)]


(2.3.10a)

=

S1

S2

−
λ1 0

0 λ2


 R1

R′
1

∆t
∆x

f ′1R1

R′
1R

′
2

+ R2

R′
2

 (2.3.10b)

=

 S1 − λ1

(
R1

R′
1

)
S2 − λ2

(
∆t
∆x

f ′1R1

R′
1R

′
2

+ R2

R′
2

)
 (2.3.10c)

The next step is to differentiate the linear operator with respect to saturation at current

iteration:

G′ =

1− λ1

(
1− ∆t

∆x

R1R′′
1

(R′
1)

2

)
0

λ2

(
− R1R′′

1

(R′
1)2R′

2

)
1− λ2

(
1− R2R′′

2

(R′
2)

2 − ∆t
∆x

f ′1R1R′′
2

R′
1(R′

2)
2

)
 (2.3.11)

After formulating the matrix, in order to find damping factor, which satisfies contraction

mapping principle, we need to find infinite norm of G′ by applying Equation 2.3.8.

‖G′‖∞ = max


∣∣∣∣1− λ1

(
1− ∆t

∆x

R1R′′
1

(R′
1)

2

)∣∣∣∣∣∣∣λ2

(
− R1R′′

1

(R′
1)2R′

2

)∣∣∣+

∣∣∣∣1− λ2

(
1− R2R′′

2

(R′
2)

2 − ∆t
∆x

f ′1R1R′′
2

R′
1(R′

2)
2

)∣∣∣∣
 < 1 (2.3.12)

Each grid cell should be treated separately and all of them should satisfy the contraction
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mapping principle. Simple algebraic manipulations, as demonstrated for local damping based

single cell problem, has been done for each vector member. Note, that the condition for the

first grid cell remains unchanged, except a new term in the governing equation, ∆x = 1
i
,

where i is number of grid cells in the system.

In order to analyze performance and apply the global damping based Newton’s solver

for two cell problem, the following test case has been generated:

Case 4. Sn1 = Sn2 = 0 and S0
1 = S0

2 = 0 with ∆t = 1.0 and M = 1.0;

In comparison with the single cell problem, for the two cell problem the equation for con-

traction mapping of the first grid cell changes by factor ∆x. For this case it is equal to 0.5.

Estimation for the second grid cell becomes even more complicated, due to integration of the

first grid cell. For this reason, contraction factor curve becomes a surface, which depends

both on S1 and S2. The damping factors for this case are equal to: λ1 = 0.09; λ2 = 0.01.

The corresponding contraction mappings for these cells are shown in Figure 2.10, 2.11. As

we can see from both figures, any possible saturation value satisfies the contraction mapping

principle, hence convergence is guaranteed provided by the theorem. On the other hand, be-

cause of very conservative estimations, where damping factors are too small, it takes many

iterations to converge to the solution. The main feature of the damping based method to

point out is the monotonic decrease of error (or update) during iterations. For standard

Newton’s method, cycling saturation values still remains, which makes convergence hope-

less. Figure 2.12 demonstrates a comparison of these two methods with Eclipse Appleyard,

where global damping based and EA converge to the same solution.
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Figure 2.10: Contraction factor curve for first grid cell (Case 4).

Figure 2.11: Contraction factor surface for second grid cell (Case 4).
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Figure 2.12: Errors for safeguarded and standard methods in Case 4.
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CHAPTER 3

DYNAMIC DAMPING BASED NEWTON’S METHOD

3.1 Single cell dynamic damping based Newton’s method

3.1.1 Analytical approach and algorithm description

Analysis of examples, described in the previous chapter, shows that fixed damping

based Newton’s method is good improvement of the standard method, which avoids failures,

but still takes relatively high number of iterations to converge. Strategy of the method uses

a priori calculated Newton step length throughout all iteration, which is very strict estimate

which might not be necessary, especially for values within some neighborhood of the solution.

These circumstances became the reason for further improvement of the current approach,

resulting in development of a more flexible and adaptive strategy, called dynamic damping

based Newton’s method. It is worth mentioning, that the term dynamic related to Newton

iterations’ length, i.e. for every Newton iteration a new damping factor will be analytically

calculated. Like in the previous approach, these values depend on first and second order

derivatives of flux function, as well as the time step size. In other words, dynamic damping

based approach chops only those saturation values which are not satisfying the contraction

condition and hence can not guarantee convergence. Otherwise, if the contraction condition

holds, it performs as standard Newton’s method with step length size equal to unity. The

aim is to reduce the number of nonlinear iterations in comparison with the fixed damping

method, without negative influence on solution accuracy and robustness of the method.

To begin with, recall the general contraction factor estimation for single cell problem

with I = [0, 1] ⊂ R:

α = sup
S∈I

∣∣∣∣1 + λ

(
R(S)R′′(S)

(R′(S))2 − 1

)∣∣∣∣ < 1 (3.1.1)
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For convenience, we introduce the following notation

γ =

(
R(S)R′′(S)

(R′(S))2 − 1

)
(3.1.2)

and apply certain modifications to equation 3.1.1:

(|1 + λγ|)2 < 12 (3.1.3a)

1 + 2λγ + λ2γ2 = 1 (3.1.3b)

λγ(2 + λγ) < 0 (3.1.3c)

Equation 3.1.3c is a condition for adaptive step length selection. Analysis of equation 3.1.3c

shows, that in order to fulfill this condition, λα should be in the following interval:

λγ ∈ (−2, 0)

An algorithm for implementation of dynamic damping based Newton’s method is the follow-

ing:
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Algorithm 1: Dynamic damping based Newton’s method

input : [Un+1]
ν → previous iteration value

output: [Un+1]
ν+1 → updated value for the iterate ν + 1

while DT <= Tfinal do

NITER = 0;

while NITER < MAXITER and ||R (Un+1;Un,∆t) || > TOL do

calculate γ;

if α > 0 then

λ = 1;

else

λ = −2/γ;

end

λ = min (λ, 1);

solve ([Un+1]
ν+1

; [Un+1]
ν
, DT, λ);

NITER ++;

end

update DT ;

update [Un+1]
ν
;

end

As we can see from equation 3.1.3c, calculation of the factor λ is not computationally

expensive, but is a very important feature of the method. This approach is hybrid in terms

of Newton step length selection, which we hope will give us advantage in terms of number

of Newton iterations in comparison to fixed damping based method. In order to clarify it,

let us compare these two approaches proposed in the thesis. In order to be consistent, the

same cases, with some additional examples, will be tested below.

3.1.2 Results and comparison with nonlinear solvers

First, we start with already tested Case 1, where the standard Newton’s method

does not converge (Sin = 0, Sguess = 0, ∆t = 1.1 and the flux function parameter M =

1). The objective for the dynamic method is to decrease number of Newton iterations as
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much as possible. Figure 3.1 shows, that the number of iterations, needed for obtaining the

same solution, decreased four times (from 20 to 5). This is a big gain in the reduction of

computational time, and can be even higher for more complicated cases. In comparison to

fixed damping, dynamic damping based Newton’s method is flexible in Newton step length

size selection, as can be seen from Figure 3.2. It damped the Newton step length only at

the first iteration down to 0.55, which is almost the same damping factor calculated for the

fixed method (λ = 0.56). This happens because the contraction factor number was higher

than unity, which does not guarantee the sequence will convergence. So, dynamic method

dampen Newton updates in the regions, only where contraction for the standard method way

above unity. On regions where the contraction factor for the standard method is less than

one, the contraction mapping of the dynamic method matches to standard. Also, Figure 3.2

shows, that for those regions, the damping factor λ is equal to one. The only chop at the

beginning was enough to satisfy the contraction condition and the algorithm converges to

the solution.

For validation purposes, it is important to make sure, that the dynamic based method

gives the same solution as the standard method, when standard successes, and compare num-

ber of iterations. For this purpose, the first case has been modified to Case 5 by changing

time step size up to ∆t = 1.8. Figure 3.3 indicates, that the dynamic method, in some

cases (e.g. Case 5) when the standard method converges, has even better performance.

Note: saturation values below zero and more than one are cut from graph for convenience.

The dynamic method applied chops only twice, on first and second iterations, while the

fixed damping method applied cuts during all thirty steps (Figure 3.4). This example also

confirms that dynamic damping methods applies chopping only for the cases when the con-

traction factor number is higher than unity; otherwise, it acts as a standard Newton method.

This allows one to avoid unnecessary chops in the regions where the standard method is a

contraction mapping and allows for potential quadratic convergence.

Case 2 and Case 3 are sensitivity analysis of viscosity ratio, M, for specific time

step sizes. Instead, this section tests big range of different time step sizes and compares
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Figure 3.1: Comparison of dynamic and fixedl damping based methods for Case 1.

Figure 3.2: Calculation of adaptive Newton update step length selection for Case 1.
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Figure 3.3: Error comparison of dynamic method with standard, along with the fixed method
for Case 5.

Figure 3.4: Calculation of adaptive Newton update step length selection for Case 5.
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dynamic damping based Newton’s method with standard and state-of-the-art safeguarding

approaches. The main focus of this analysis is the number of nonlinear iterations and solution

differences of these methods. Further examples will demonstrate damping behaviors for

particular cases.

Case 6: Sinitial = Sguess = 0, ∆t = [0.0 : 0.1 : 15.0] and M = 1.0

Figure 3.5: Comparison of number of nonlinear iterations for M = 1.0.

Figure 3.6: Solution differences for all time step sizes for M = 1.0.

As we can see from the Figure 3.5, dynamic damping based Newton’s method con-
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verges for all time step sizes within a reasonable number of iterations. However, trust region

based Newton’s method fails to converge within certain time step size range (number of iter-

ations hits maximum value). In the dynamic method, as the time step increases, the number

of nonlinear iterations increases monotonically, due to the fact that more and more chops are

needed at the beginning iterations in order to guarantee convergence. But the general trend

for all dynamic based chopping strategies is that, when the iterative value approaches to

the solution within some tolerance, damping values λ becomes equal to one, i.e. behaves as

standard Newton’s method, which helps to reduce the total number of nonlinear iterations.

Figure 3.6 shows that solutions for all time step sizes are very close to each other, within

10−8 tolerance. The Eclipse Appleyard method takes a few more iterations than the trust

region method, but this is not always true, as will be shown during analysis of next test

cases. Note: particular case (∆t = 1.0), when the trust region based solver diverges, its

graph is excluded.

Case 7: Sinitial = Sguess = 0.5, ∆t = [0.0 : 0.1 : 15.0] and M = 5.0.

This test case has been implemented in order to visualize convergence performance of all

methods for particular viscosity ratio. The value M being equal to 5.0 means that oil’s

viscosity is five times less than water viscosity and velocity is expected to be higher. Injection

saturation Sinj has not been changed for any tested cases and is equal to 1.0. It is very crucial

to notice, that by changing viscosity ratio, the sup of the second order derivative of the flux

function increases to some higher point. Hence, fulfillment of some saturation values to

contraction condition changes. Figure 3.7 highlights some of the features of each method:

standard Newton’s method is unstable in the region where time step sizes are between 1 and

3; moreover, it shows poor performance when ∆t > 3, because it converges to nonphysical

solutions (where S > 1). On the other hand, the dynamic damping based method does not

have any convergence failures, and in some particular cases takes even fewer iterations than

trust region or EA approaches. Comparison of solutions, as in the previous case has been

evaluated which showed the highest difference in answers to be 2·10−8).

Case 8: Sinitial = 0.3, Sguess = 0.9, ∆t = [0.0 : 0.1 : 15.0] and M = 0.5
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Figure 3.7: Nonlinear solvers’ performance for M = 5.0.

As it was mentioned before, usually initial guesses in reservoir simulation problems are chosen

to be equal to the value from previous time step. This time we make them different and test

for the case, when oil viscosity is twice that of the viscosity of water. From Figure 3.8 we

observe that initial guess plays an important role in performance of all methods, especially

in the standard Newton’s method, where converge are could be obtained for all time step

sizes within five iterations. Good initial guesses are reflected in the convergence rate of the

dynamic damping based method as well, where the maximum number of iterations is equal

to 9. The difference in the number of iterations is the price which we need to pay in order to

guarantee convergence. At the same time, at time step size equal to around 2, the number

of iterations taken for the dynamic based method is even less than all other methods in our

comparison. Comparison of answers with other nonlinear solvers has been demonstrated

having the same behavior as in previous examples - maximum difference of is very small and

equal to 10−8. Along with it, as it was mentioned before, EA can take fewer iteration to

converge in comparison to the trust region method, which makes behavior of other methods

also problem dependent.

The adaptive and flexible damping strategy of the dynamic damping based Newton’s

method, based on analytical calculations, is a crucial feature of the approach to investigate.
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Figure 3.8: Nonlinear solvers’ performance for M = 0.5.

As it can be seen from Figure 3.9, damping strategies vary according to input data, such

as time step size. Dynamic method can start as standard Newton’s method with λ = 1,

apply strict chop equal to 0.81, and back to standard as in the case with ∆t = 1, or remain

as standard Newton’s method only. Experiments shows, that in most of the cases, it starts

with strict chopping, and damping factors value increase monotonically as iteration values

gets close enough to the solution. The bigger the time step size, the later the damping

factor will be modified to one. All of these strategies converge to the same answer as current

safeguarded techniques applied in reservoir simulation.

3.2 Multi cell dynamic damping based Newton’s method

3.2.1 General approach

Dynamic damping based approaches for two cell problem has the same strategy as

for the single cell, where instead we consider vector spaces and generate numerical scheme

again. Norm selection is also remains the same. Adaptive step length selection implemented

for both cells separately, by evaluating each row of G′, as it is defined for infinity the norm.

Two test cases were studied for analysis of dynamic damping based methods in multi cell
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Figure 3.9: Calculation of adaptive damping factors for M = 5.0

problem.

3.2.2 Results and comparison with current safeguarding strategies

Case 9. Sn1 = Sn2 = 0 and S0
1 = S0

2 = 0 with M = 1.0;

This case is chosen for comparison of the number of nonlinear iterations, showing the be-

havior of damping factors for each grid cell and solution obtained from dynamic damping

based method. The number of nonlinear iterations, for both dynamic damping based and

Eclipse Appleyard methods, is below ten for all time step sizes, which indicates identical

performance of the methods (Figure 3.10). On the other hand, dynamic damping based

iteration numbers are slightly lower in comparison with Eclipse Appleyard method, which

gives a small advantage to the method. At the same time, trust region based Newton’s

method fails to converge for times step sizes larger than ∆t > 0.3. Chops to inflection point

is happening at each iteration, at least for one of the grid cells. This example demonstrates,

that even if solution and iterative values are in the same convex or concave region, as one of

the part of S-shaped flux function, it is not guaranteed to converge all the time. If we look
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Figure 3.10: Number of nonlinear iterations for two cell problem (Case 9).

Figure 3.11: Damping factor behavior for both cells with increasing time step size (Case 9).

57



Figure 3.12: Solution of dynamic damping based method for different time step sizes (Case
9).

at this problem from the contraction mapping prospective, divergence can happen due to

the fact that contraction condition does not hold at the inflection point with damping factor

equal to unity, which may lead to divergence of the sequence.

Figure 3.11 shows the behavior of the damping factor for dynamic method of partic-

ular time step sizes: ∆t = 0.1, ∆t = 2.5 and ∆t = 5.0. As it can be noticed from this figure,

for small time step size like ∆t = 0.1, the damping factor λ is equal to unity for both grid

cells, which means that standard Newton’s method can handle this time step size. However,

after increasing time step size up to ∆t = 2.5 and ∆t = 5.0, damping factors, for both grid

cells, become less with time step size increase.

The solution, obtained by dynamic damping based Newton’s method, is shown in

Figure 3.12. Comparison with Eclipse Appleyard method demonstrates the same results,

while comparison with trust region method can not be estimated, due to the failures of the

method.
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The next case tests slower physics, when viscosity ratio decreased and solution of all

methods will be compared at the same time.

Case 10. Sn1 = Sn2 = 0.05 and S0
1 = S0

2 = 0.9 with M = 0.01;

The transport equation, where water-oil front propagates with lower velocity, due to the high

oil viscosity value (e.g. 100 cP), can be interpreted as slow physics. Initial guess is modified

along with initial state, because it is not know a priori if a particular value is a sufficiently

good guess for Newton’s method to converge. Figure 3.13 shows that all methods converge

to the solution in four up to nine iterations. Dynamic damping based Newton’s method

exhibits better performance for time step sizes less than two, and behaves the same as trust

region method for the rest of time. This example shows efficiency of the proposed method,

which is not slower in terms of the number of nonlinear iterations. Confirming robustness

in all previous examples, it always acquires accurate results as well, as can be seen from

the Figure 3.14, where dynamic damping based solutions for all time steps compared to

Eclipse Appleyard and trust region methods’ solutions respectively. The largest difference

in solutions of state-of-the-art solvers versus damping based method is 2 · 10−8. Solutions

for first and second grid cells in the following ranges respectively: [0.12,0.36],[0.08,0.29].

Calculation of adaptive damping factor for both grid cells shows identical performance, where

λ1 = λ2 = 1. Hence, the graph is not shown in this example. Because of identical behavior

in the cases with faster physics, where viscosity ratio is higher than one (e.g. M = 2), results

are not presented in the section. As in the previous cases, proposed algorithm’s efficiency

is problem dependent, with the same accuracy and unconditional robustness. Calculated

contraction factors for first and second grid cells are depicted in Figures 3.15.
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Figure 3.13: Number of nonlinear iterations of slow physics two cell problem (Case 10).

Figure 3.14: Solution differences between: left - dynamic vs. Eclipse Appleyard methods;
right - dynamic vs. trust region methods. (Case 10).
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Figure 3.15: Contraction mappings for first and second cells (Case 10).
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CHAPTER 4

DISCUSSION

Previous chapters showed analytical safeguarding techniques for Newton’s method,

which has been developed for single cell and one dimensional problems with two grid cells,

where the aim is to avoid convergence failures of transport equation, and hence decrease

computational time, by eliminating time step chops throughout the simulation. Analysis

shows that complexity is embedded in the formula for the flux function, which leads to

convergence difficulties. All the results shown in the thesis have been implemented for S-

shaped flux functions with different parameters. Nevertheless, contraction mapping principle

is applicable for any type of fractional flow curve, which can be represented even in the form

of a table.

First, fixed damping based Newton’s method has been derived based on the contrac-

tion mapping theorem. This approach can be characterized as following: the damping factor

is calculated for particular time step size and initial state, which makes the contraction factor

value less than one in order to satisfy the condition that guarantees convergence. Calculated

value remain the same for all iterations, until iterative values reaches the solution. As can

be seen from Figure 2.7, the fixed damping based method takes many iteration to converge.

The reason is unnecessary damping of the Newton update even in the regions, where the

contraction condition holds for standard Newton’s method. In other words, there is no need

to dampen Newton update in already contractive regions, especially when iterative values

are “sufficiently” close to the solution. The same can be observed for the two cell problem

as well, where a numerical scheme has been developed for implementation of a new method.

This inefficiency led to development of another approach, called the dynamic damping based

Newton’s method.
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Figure 4.1: Contraction factors for standard and global methods of arbitrary case.

In comparison with the fixed damping method, dynamic damping based Newton’s

method dampens Newton updates in the regions where the contraction mapping principle

does not hold. Otherwise, it behaves as standard Newton’s method with damping factor λ

equal to unity. For example, shaded region on the Figure 4.1 does not need restriction for

updates. Contraction factor values for local method in this region match with values of stan-

dard method, as on the Figure 3.2. Also, adaptive damping is not necessarily monotonically

increasing towards solution: it can start as standard Newton at first, dampens on the next

iteration, and performs back as standard method during the next iterations (Figure 3.9).

Robustness and accuracy of this method remains the same as for the fixed method, while

efficiency increases dramatically, which gives big advantage in computational time (e.g. Fig-

ure 3.3). Another advantage of the method is guaranteed convergence, which is not provided

by other safeguarding strategies that we compared. Adaptive damping factor strategy allows

the method to perform better or the same as other safeguarding methods. For particular

cases it may demonstrate poorer results, which makes efficiency problem dependent.

After obtaining single cell results for dynamic method, contraction mapping theory

has been implemented for a one dimensional problem with two grid cells. As for the fixed
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approach, one dimensional problem is modified from algebraic equation into vector represen-

tation. Definitions of matrix norms have been also provided, which finds direct application

for one dimensional problem. Governing transport equation, which is in continuous PDE

form, has been spatiotemporally discretized in order to form implicit numerical scheme. Each

cell has been treated separately, i.e. adaptive damping factor calculations have been per-

formed to fulfill contraction condition. The transport equation considers viscous forces only,

as in the cases with single cell. Robustness, accuracy and efficiency demonstrated relatively

same behavior as in single cell problems as well. It’s worth mentioning that computation

of contraction factor for the second grid cell has influence of the first grid cell’s parameters.

In other words, every grid cell’s contraction condition is dependent on parameters of all

previous grid cells. That is one of the possible reasons, why damping strategy for the second

cell is more conservative than for previous one, as demonstrated on the Figure 3.11. But the

general trend of these values is the same: in a sufficiently close neighborhood to the solution

both values adapt and performs as standard method.

As one of the extensions for the work described, generalization of analytical expres-

sions into n cell one dimensional problem is promising, where equations for three, and even

for four grid cells problem need to be derived for construction of finite series, which would

allow one to create sufficient conditions for each cell automatically.

Discretization in time of the governing PDE and keeping the space in continuous form

results in an infinite dimensional Newton’s method, which becomes first order ODE equation,

represented in APPENDIX A. Application of contraction mapping for this approach is very

challenging, but would allow one to get higher accuracy for Newton’s method. Also, by

theory of asymptotic mesh independence developed by Allgower et al. [3, 2], it is proved that

sufficiently fine discretized Newton’s method behaves the same as the infinite dimensional

method, implying that convergence difficulties does not arise due to discretization technique.

Classical proof of contraction mapping theorem, which provides guaranteed conver-

gence, highlights that convergence speed of the applied method is at least linear, which

means that, there are cases when convergence rate can be even faster, for example with
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quadratic speed. L. V. Kantorovich and G. P. Akilov developed sufficient conditions to

guarantee quadratic convergence in Banach spaces (see APPENDIX B). The only restriction

of this approach is requirement of a priori good initial guess value, which is quite difficult to

estimate.

New, theoretically proven and later optimized safeguarding approaches of Newton’s

method have been developed for the transport equation, for any possible flux function shape.

While development of the methods, behavior and complexities in convergence of standard

Newton’s method has been investigated for various S-shaped flux function parameters. Com-

parison with state-of-the-art nonlinear solvers confirms that heuristic approaches lack of ro-

bustness, leading to restrictions in time step sizes. Contraction mapping theorem can be

applied in multiphase, multicomponent and multidimensional sequential simulations with

capillary and buoyancy forces consideration.
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APPENDIX A

INFINITE DIMENSIONAL NEWTON’S METHOD

Infinite dimensional Newton’s method would allow us to obtain higher accuracy by

eliminating spacial discretization and investigate asymptotic mesh independence principle

mentioned before. As for a discrete system, objective is to solve following equation in Banach

spaces:

R(S(x)) = 0; (A.0.1)

Operator for this approach remains in the same form:

Sν+1(x) = G (S(x)) = Sν(x)− λ [R′(Sν(x))]
−1
R (Sν(x)) (A.0.2)

with damping factor λ ∈ (0, 1], which should be calculated to make G contractive, i.e.

Θ = ‖G′(S(x))‖∞ < 1

The residual equation for the infinite dimensional method has following form:

R(S(x)) = S(x)− c+ ∆t
d

dx
f(S(x)); (A.0.3)

where c > 0 is a constant representing old saturation state, and f(S(x)) is positive, differ-

entiable and monotonically increasing function. Fréchet derivative of the residual equation

is

R′(S(x))δ(x) = δ(x) + ∆t
d

dx
[f ′(S(x))δ(x)] (A.0.4)
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Fréchet operator acting on residual equation R(S(x)) is formulated as:

[R′(S(x))]
−1 ·R(S(x)) = − 1

∆tf ′(S(x))e
1

∆t

∫ x
0

1
f ′(S(u))

du
·
∫ x

0

e
1

∆t

∫ u
0

1
f ′(S(µ))

dµ
R(S(u))du (A.0.5)

After introducing the following notation β(x) = e
1

∆t

∫ x
0

1
f ′(S(u))

du
, we differentiate the operator

G(S(x)).

G′(S(x))δ(x) = δ(x) +
λ

∆t

[
1

β(x)f ′(S(x))

∫ x

0

[
β(u)R(u)

(
1

∆t

∫ u

0

− f
′′(S(ν))

f ′(S(ν))2
δ(ν)dν

)
+ β(u)δ(u) + ∆tβ(u)

d

du
(f ′(S(u))δ(u))

]
du

− β(x)f ′′(x)δ(x) + β′(x)δ(x)f ′(x)

(β(x)f ′(x))2

∫ x

0

β(u)R(u)du

]

We want to find operator norm (or an upper bound), defined as in [14], for:

Θ = ‖G′(S(x))δ(x)‖op = sup‖G
′(S(x))δ(x)‖
‖δ(x)‖ = ‖G′(S(x))‖∞ < 1

In other words, we need to extract all δ values from expression, which can be further canceled

by definition of operator norm. However, this operation is not straightforward, due to the

signs of fractional flow values, etc.
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APPENDIX B

THE MODIFIED NEWTON-KANTOROVICH THEOREM

This appendix presents modified Newton - Kantarovich’s theory, developed by Deu-

flhard - Heindl [9], which gives guaranteed convergence in Banach spaces of Newton-like

method for comparable initial guesses.

Newton’s method for this theorem is modified to:

xν = xν − [A(xk)]
−1R(xν), ν = 0, 1, 2..., (B.0.6)

where A(x) denotes an invertible, bounded linear operator, which is an approximation to

R′(x) at the same time. For example, for single cell problem this operator is equal to:

A(x) = λ(x) [1 + ∆tf ′(x)] (B.0.7)

Formulation of the theorem states that if following conditions hold, convergence of the se-

quence is guaranteed:

∥∥[A(x0)]−1(R′(x)−R′(y))
∥∥ 6 K‖x− y‖, K > 0∥∥[A(x0)]−1(A(x)− A(x0))
∥∥ 6 L‖x− x0‖+ l, L > 0, l > 0∥∥[A(x0)]−1(R(x)− A(x))
∥∥ 6M‖x− x0‖+m, M > 0,m > 0

l +m < 1, σ = max

(
1,
L+M

K

)
∥∥[A(x0)]−1R(x0)

∥∥ 6 η, h =
σKη

(1− l −m)2
6

1

2
.

For cases when standard Newton’s method fails, it is possible to find a damping factor λ,
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such that conditions of the theorem are satisfied. Also, if that is the case, convergence will

be at least quadratic.

Application of this approach is quite restrictive, because of requirement for a suffi-

ciently close initial guess.
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