
T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

A PRIORI CHARACTERIZATION OF LOCALITY WITHIN

SEQUENTIAL-IMPLICIT NONLINEAR SOLUTION PROCESSES

by
Soham M. Sheth

A thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science

in the Discipline of Petroleum engineering

The Graduate School

The University of Tulsa

2014



T H E U N I V E R S I T Y O F T U L S A

THE GRADUATE SCHOOL

A PRIORI CHARACTERIZATION OF LOCALITY WITHIN

SEQUENTIAL-IMPLICIT NONLINEAR SOLUTION PROCESSES

by
Soham M. Sheth

A THESIS

APPROVED FOR THE DISCIPLINE OF

PETROLEUM ENGINEERING

By Thesis Committee

, Advisor
Rami M. Younis

Mohan Kelkar

Randy Hazlett

ii



ABSTRACT

Soham M. Sheth (Master of Science in Petroleum engineering)

A Priori Characterization of Locality within Sequential-Implicit Nonlinear Solution Processes

Directed by Rami M. Younis

73 pp., Chapter 5: Discussion

(266 words)

Flow in porous media is characterized by a set of coupled nonlinear governing equa-

tions, arising due to the volume averaging process of the continuum. These equations in-

variably exhibit a localized character in space and time. Transport variables, exhibiting a

hyperbolic wave nature, evolve very locally while flow variables, essentially parabolic waves,

show a relatively global support. Characterizing the nonzero support of the change in the

state variables holds immense application. Many heuristic methods have been developed to

exploit this knowledge of locality in the past, but little to no work has been done on deriv-

ing analytic formulations. Moreover, it is hypothesized that certain closed form analytical

models that depend solely on known parameters of the system provide a priori character-

izations of the support. This thesis aims at characterizing the spatiotemporal evolution of

the multiscale flow and transport systems analytically.

This approach first proceeds by forming the fully-implicit, semi-discrete in time, set of

equations. This is followed by obtaining the infinite-dimensional Newton iterations, solutions

of which result in the updated state variables. In this, each iterate is the solution of a linear,

steady state Partial Differential Equation; the solution itself is the Newton update. The sum

of these updates is the instantaneous change in the state variables over the time step.

The practical implications of this work are far-reaching; uncertainty quantification

and simulation model developers will know the precise locality of any dynamic multiphase
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displacement before knowing its complete state. This can lead to the development of nu-

merical techniques in multiscale numerical simulation of oil and gas recovery that perform

on orders of magnitude more computationally efficiently.
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CHAPTER 1

INTRODUCTION

Petroleum recovery processes invariably couple physical phenomena that are charac-

terized by a disparate range of spatiotemporal scales [6, 29]. A first-order source of such

coupling is within the constitutive relations for flow in porous media that arise through

the volume averaging process of continuum modeling. One specific example of this is the

coupling between pressure and saturation via the multiphase extension to Darcy’s law [33].

Physical systems that involve such character are referred to as multiscale systems. Another

source of coupling across scales arises in petroleum recovery processes due to the fact that

the overall integrated process will often involve multiple types of physics. For example,

geomechanics and multiphase flow are coupled to well-bore flow [36]. Such systems are re-

ferred to as multiphysics systems. This thesis seeks to further our understanding of the

spatiotemporal evolution of multiscale and multiphysics systems that are broadly central to

petroleum recovery systems. The proposed approach is analytical, and it is restricted to the

focal setting of petroleum recovery systems that are modeled by a certain canonical form.

This canonical form is introduced mathematically later in this section. The canonical form

encompasses the general governing equations for transient multiphase multicomponent flows

in heterogeneous porous media with the possibility for chemical reactions and coupling to

advanced well-bore flows.

Multiscale and multiphysics coupling is invariably accompanied by an inherent, and

dynamically evolving, spatiotemporal locality. While one set of physics evolves globally,

other phenomena exhibit a relatively local evolution. There is further complexity in such

physical systems; the transitions across characteristic regimes, and the scale separations

across various coupled subprocesses are often nonlinear and state dependent. Subsequently,
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the precise nature of the spatiotemporal locality in the evolution of state variables is difficult

to characterize. In general heterogeneous and nonlinear settings, analytical models of such

systems are limited, and numerical simulation is necessary for the purposes of modeling for

prediction and assessment [4, 12].

The numerical simulation of multiscale and multiphysics systems is fundamentally

challenged by a curse of dimensionality. Specifically, in numerical simulation, the space-

time domain is discretized and approximations of the state variables at discrete points or

elements are sought. The resolution of the discrete domain refers to level of granularity of the

discretization, whereas the extent of the domain refers to its overall size. The dimensionality

of the discrete domain is the product of the resolution and the extent. In multiscale and

multiphysics systems, the global physics will dictate the extent of the discrete spatial and

temporal domain while the local physics will dictate its resolution. The wider the gap

between the global and local characteristic scales, the larger is the dimensionality of the

full-resolution discrete system. Both globally and locally evolving state variables need to

be solved under the same imposed dimension of the discrete domain. This implies that the

computational complexity of such simulations is far greater than the intensity of change in

the physical variables.

This leads to a timely topic of research in the design of numerical simulation meth-

ods. Modern advances in the simulation of such phenomena aim to take advantage of the

spatiotemporal locality of the evolution of certain state variables in order to reduce the nec-

essary computational effort [20]. Ideally, and especially in light of the geometric growth in

the complexity of emerging applications, this is accomplished with an amount of computa-

tion that is directly proportional to the amount of change in state variables. Next we review

methods in Numerical Simulation that strive to exploit locality in one form or another.

1.1 Methods that exploit locality

Modern simulation methods for complex nonlinear multiscale problems overwhelm-

ingly follow the Adaptive Discretization paradigm. In this paradigm, the numerical approxi-
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mation itself is adaptively modified in space, time, or both in order to improve the method’s

computational efficiency. In doing so, while the objective of adaptive computation is often

achieved, the integrity of the approximation’s accuracy and robustness may be compromised

or require additional effort for it to be maintained.

One example of a promising Adaptive Discretization method is Adaptive Mesh Re-

finement or Dynamic Gridding [9, 21, 40, 19]. In these methods, the spatial discretization of

the domain is dynamically altered by refining its resolution in locales where changes in state

are occurring locally and by coarsening the resolution elsewhere. This class of method is

particularly effective for homogeneous problems that evolve with a predominant travelling-

wave character. Under heterogeneity, homogenization strategies are necessary every time

the mesh is adapted [19]. This leads to additional computational expense, and more impor-

tantly, to additional approximation errors associated with the homogenization process. For

problems that have components which evolve with a more global character, the efficacy of

Adaptive Mesh Refinement methods is relatively limited. Advances in the identification of

locality can help mitigate some of the concerns surrounding the use of AMR.

Another promising Adaptive Discretization method is the use of a spatially varying

temporal discretization [18, 16]. These methods are also referred to as local time-stepping or

adaptive time-step refinement methods [31, 34]. In this class of method, parts of the domain

where a state variable is experiencing rapid change, the numerical integration is performed

using a fine temporal resolution compared to other locales. While such methods are proving

to be effective for hyperbolic problems that involve sharp frontal advancement, there are

potentially serious challenges to their application for parabolic problems with more global

character. In particular, for such problems, synchronization strategies are required in order

to inform neighboring locales of the locally occurring rapid changes in state. Reliable a priori

knowledge of any locality that may be present could lead to a class of local timestepping

methods that are effective even for parabolic problems. In such schemes, there would be no

need for any synchronization despite the parabolic character.

Adaptive Multiscale methods are an alternate form of Adaptive Discretization strat-

3



egy that do not rely on the dynamic adaptation of the discrete domain [1, 24, 25, 32]. Rather,

in this approach, the state variables that evolve on a more global scale are integrated using

coarsened representations. These representations are tied to the remaining state variables

that are represented by fine scale equations.

An emerging alternate paradigm to the Adaptive Discretization class of method is the

Adaptive Solver approach. In the Adaptive Solver approach, the key idea is to apply full-

resolution, fully-coupled approximations that are static, and to innovate underlying solvers

that are themselves dynamically adaptive to a varying spatiotemporal support. Since the

numerical approximation itself is unmodified, there are no impending fidelity or accuracy

concerns and these methods can in principle combine the efficiency of adaptive computation

with the fidelity of well-established numerical approximations. Examples in this class of

method include adaptive localization strategies [46] and solutions that exploit potential based

orderings [28]. Another example is the development of adaptive nonlinear preconditioners

that are based on domain decomposition ideas [11, 23]. These nonlinear solvers were recently

applied to basic petroleum recovery applications [38, 37].

All of these adaptive numerical methods require the answer to one fundamental ques-

tion. Given a particular instant in time, suppose that we are informed of the present dynamic

and static states of the system that is under consideration. In what part of the spatial do-

main will the dynamic state experience change? This part of the domain is called the support

as it supports nontrivial instantaneous changes in the state. What does the support depend

on and how?

1.2 Associated work on the topic of locality

The character of the evolution of flow and transport state variables and of their associ-

ated spatial supports is complex. Moreover, as discussed in the previous section, an accurate

characterization of this evolution is paramount for the future success and efficiency of simula-

tion methods for emerging multiscale and multiphysics petroleum recovery processes. In the

broadest context, the spatiotemporal locality of dynamic change continues to be a subject of
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study [22], and in the more specific context of general multiphase flow and transport, there

is still no fundamental and universally applicable characterization of it. In this section, we

first review associated work on the topic. This is followed by a technical introduction to the

proposed approach towards a fundamental and universally applicable characterization.

In the literature, there are two approaches to the study of locality and to the devel-

opment of ways to exploit it in computation. The first approach is indirect and seeks to

characterize locality through the study of the resulting approximation errors in models for the

system. Classic examples of such work include the error estimate derivations [5, 43] and the

reviews [2, 41], as well as several recent applications such as [35, 47, 14, 39]. These and other

successful error-based adaptivity investigations and applications are well-established for the

flow (Equation 1.4.2), transport (Equation 1.4.3), and coupled (Equation 1.4.1) problems.

The second approach towards characterizing and exploiting locality that is reported

on in the literature is direct. Direct studies of locality in unrelated physical systems include

the flow of traffic [42], which exhibits a traveling wave character, and accretive transport

phenomena [30]. On the other hand, in studies that are focused on flow and transport phe-

nomena, works following the direct approach are further categorized as either (a) those that

tackle general systems while seeking to devise ad hoc characterizations, or (b) those that deal

with limiting cases and idealized systems while seeking exact and analytical results. Exam-

ples of the former, are the sharp discontinuity detection procedures that are applicable to

transport problems [8, 7, 10]. In these procedures, the focus is on the detection of fronts and

in the application of linearized approximations and local Courant-Friedrichs-Lewy numbers

to guess the support. Examples of the latter are studies regarding the notion of a radius

of investigation in pressure transients about wells in flow problems [27, 44, 13]. In these

studies, while idealizations are made regarding the limitation on the phases present and on

the level and nature of the underlying homogeneity, the results are exact.

The motivation for the present work stems from a recent advance that was made at

FuRSST(Future Reservoir Simulation Systems and Technology) [45]. In this advance, a di-

rect approach is taken to the study of locality in decoupled flow and transport systems. The
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approach tackles general flow and transport problems that incorporate general nonlinearity

and heterogeneity in one-dimension. The study derives a sharp analytical bound that char-

acterizes the spatiotemporal support of change for decoupled flow and transport systems. It

achieves this by utilizing the infinite-dimensional Newton method [15], and it provides links

to the discrete problem through recent developments in the derivation of an Asymptotic

Mesh Independence Principle [3, 26].

This thesis will focus on a specific and yet broad setting for multiphase flow and

transport. For this setting, a hypothesis regarding the character of the instantaneous spa-

tiotemporal support is made. The proposed work makes conjectures of specific estimates for

the size, location, and rate of growth of the support that depend on parameters that are

already known. It is then proposed that an innovative analytical framework be applied in

order to validate and analyze the hypothesized conjectures.

1.3 The computational kernel in simulation

Petroleum recovery processes are modeled by a set of nonlinear and inhomogeneous

partial differential equations obtained by applying mass, momentum and energy balance

concept on a continuum. These equations, for the case of isothermal flow, are obtained by

the combination of the conservation of mass with Darcy’s law [33]. The nonlinear coupling

between elliptical flow and hyperbolic transport equation introduces further complexity in the

system. Conservation of mass for a two-phase flow system can be described by Equation 1.3.1.

∂(ραφSα)

∂t
+∇ (ρα~vα) = gα, (1.3.1)

where, gα is the phase volumetric sink/source term and vα is the superficial phase velocity

given by the multiphase extension of Darcy’s law

~vα = −Kkrα
µα

(∇pα − ραg) , (1.3.2)

where K is the heterogeneous permeability tensor and krα
µα

is the phase mobility designated

6



by λα. Capillary pressure is a nonlinear function of saturation and is formulated as the

difference in pressures of the non-wetting phase to the wetting phase, pc = pnon − pwet.

Mathematically, reservoir simulation can be described as a technique to obtain the

solution of a set of equations given by Equation 1.3.1. Due to the heterogeneous and complex

nature of the equations, analytical solutions are limited and only possible to certain simplified

and homogeneous problems. In order to obtain the solution for a complex case, numerical

simulation techniques must be adopted. In this, the continuous partial differential equations

are discretized in space and time, leading to a discrete continuum. The discretization in time

can be treated explicitly or implicitly. Explicit scheme evaluates the constitutive nonlinear

functions at the old state reducing the number of unknowns to one, which can be directly

evaluated by simply substitution. In spite of being a computationally efficient scheme, it

is restricted by stability. On the other hand, the implicit scheme evaluates the functions

at the current state, which introduces a number of unknowns. To solve this system of

equations a simultaneous solution method must be employed. This scheme has unconditional

stability but at the price of computational efficiency. In this thesis we will focus on the fully

implicit scheme for the time discretization. Each grid block in the discrete continuum has

its independent governing equation and a state. As opposed to the continuous problem,

in the discrete domain, each sub continuum has homogeneous properties while preserving

nonlinear dependencies and complex character of the governing equation. Owing to the

nonlinear characteristics of the equations, iterative numerical methods can be employed to

solve for the state variables. One of the most extensively used fixed-point iteration schemes

as the computational kernel is the Newton’s method.

Newton’s iterations follow a gradient based paradigm. At each iteration it generates

an update function which is the solution to a linear system of equations. To obtain the

consecutive updates, computation of the derivative of the function with respect to every

state is required. In the discrete simulation case, the residual function, or the governing

equation, is a vector of equations for the discrete continuum. Consequently, the derivative

generated is a matrix called the Jacobian given by
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∂R1

∂u1

∂R1

∂u2
. . .

∂R2

∂u1

∂R2

∂u2
. . .

. . ∂R3

∂u3
. .

. . . . .

. . . . ∂Rn
∂un


;

The product of residual vector (R) to the inverse of the Jacobian matrix (J) gives the update

which when added to the old state generates the new set of state variables. Starting from the

initial state, also knows as the initial guess, the scheme iteratively converges to the solution.

Equation 1.3.3 gives one such iteration step with the initial guess ,
[
~U1
]ν=0

= ~U0.

[
~Un+1

]ν+1

−
[
~Un+1

]ν
= −J−1R

(
Un+1;Un,∆t

)
; (1.3.3)

1.4 Formal objectives and proposed approach

The physical system this thesis covers is concerned with the evolution of two sets

of independent state variables - flow and transport. Flow, exhibiting a parabolic wave

nature, evolves locally at very early times but in sometime its effect can felt at the reservoir

boundaries. There variables are denoted by p(~x, t), where ~x ∈ R3 is the position vector and

t ≥ 0 is the temporal variable. Pressure attains steady state and evolves in an elliptic manner

exhibiting a global support in the change of state variables. On the other hand, transport

variables, denoted by s(~x, t), evolve locally exhibiting a hyperbolic wave character.

1.4.1 Examples of locality in flow and transport

Consider the case of 2 phase black oil model in multiple dimensions. The reservoir is

described by the permeability tensor which has a heterogeneous distribution and the pressure

independent porosity. The spatial domain is discretized using a 40 X 60 X 6 Cartesian grid.

The problem modeled here consists of 2 phase flow (oil and water) with 2 injection wells and

5 production wells located throughout the domain. The well constraints are Bottom Hole

Pressure (BHP) with injection pressure 5000 psi and production wells are operated at 800
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psi. The initial pressure in the reservoir is determined by the gravity-capillary equilibrium.

This system is modeled by the Equation 1.4.1 with specific expressions for the composite

nonlinear terms which are flux, accumulation and the source.

Figure 1.1 shows the pressure distribution at time t = 15 days for a 2 dimensional

slice containing the second layer. Evident from the figure, the support of the instantaneous

change in the flow variable is global. The entire domain is contained in the Newton’s nonzero

update set. In other words, the update vector is a dense vector. In spite of this characteristic

feature, it can be observed that some Newton’s updates are significantly greater in magnitude

than the rest i.e. locally around the wells. Hence, it can be concluded that there is some

degree of locality present even in the case of a global update function.

Figure 1.1: Pressure distribution along a 2 dimensional slice in a 3 dimensional problem.
The global support of the flow variables dictate the reservoir boundaries.

On the other hand, Figure 1.2 depicts the saturation distribution after a simulation of

1200 days in a 2 dimensional plane. Unlike the flow equation, transport evolves in a strictly

local manner possessing a hyperbolic wave characteristic. The transport waves emanate from

the wells and traverse towards the rest of the reservoir. The locality in the support of the

instantaneous change is governed by the nonlinear wave dynamics as well as by the underling
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heterogeneity. Unlike the pressure equation, saturation equation preserves the locality over

a timescale of years.

Figure 1.2: Saturation distribution along a 2 dimensional slice in a 3 dimensional problem.
Local evolution of the hyperbolic transport equation can be seen.

1.4.2 The canonical form

The flow and transport state variables evolve according to a set of coupled governing

equations given by Equation 1.3.1. This partial differential equation can be reduced to a

canonical form wherein only the notation is simplified without hampering the complexity

and nonlinearity. Throughout this thesis we will consider the canonical form, given by

Equation 1.4.1 and establish connections to the numerical scheme.


R (p, s) = ∂

∂t
a (p, s)−∇ [k (p, s)∇p] + g (~x, t) = 0 ~x ∈ D ⊂ R3, t ≥ 0,

k (p, s)∇p = 0, ~x ∈ ∂D, t ≥ 0,

(p, s) = (p0, s0) , ~x ∈ D, t = 0,

(1.4.1)

where R is the general nonlinear residual operator. The accumulation term, a, is generally
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nonlinear and it incorporates a heterogeneous porosity and general density dependencies.

The mobility function, k, incorporates a spatially varying permeability tensor and a dy-

namic mobility dependency. The net source term is denoted as g, and it may be spatially

and temporally variable. Finally, the auxiliary conditions in Equation 1.4.1 prescribe a

no-flow outer boundary condition (Neumann boundary condition), which alternatively can

be a constant pressure boundary (Dirichlet boundary condition), and a compatible initial

condition.

The nonlinear functional terms, accumulation, mobility, and net sources, appearing

in the governing equations are generally functions of both saturation and pressure. This

fact leads to the nonlinear coupling between the flow and transport. One of the methods

of obtaining an approximate solution to this coupled system is by sequentially isolating

the pressure and transport components (see for example. [4]). This is accomplished by

successively freezing the functional dependencies; for example a (p, s) is considered as a (p),

with a frozen saturation state, s, that becomes a parameter rather than a variable. In one

iteration of this strategy, transport is frozen and a decoupled pressure is obtained. The

new pressure is subsequently frozen and an updated transport variable is obtained. The

sequential strategy continues with such iterations until convergence.

The general form of the flow equation with frozen transport terms is given by Equa-

tion 1.4.2 with Neumann boundary conditions and initial reservoir conditions,


RF (p) = ∂

∂t
a (p)−∇ [k (p)∇p] + w (~x, t) = 0 ~x ∈ D ⊂ R3, t ≥ 0,

k (p)∇p = 0, ~x ∈ ∂D, t ≥ 0,

p = p0, ~x ∈ D, t = 0,

(1.4.2)

The transport equation, on the other hand, is
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RT (s) = ∂

∂t
a (s)−∇.f (s) + w (~x, t) = 0 ~x ∈ D ⊂ R3, t ≥ 0,

f (s) .n̂ = 0, ~x ∈ ∂D, t ≥ 0,

s = s0, ~x ∈ D, t = 0,

(1.4.3)

Here, f(s) is the dimensionless fractional flow function which describes fraction of the

total flow that consists of the wetting phase. This quantity depends on the dynamic phase

mobilities which essentially depend on the relative permeabilities being a nonlinear function

of saturation.

1.4.3 The basic question

Consider the dynamic flow problem given by Figure 1.3, where the current state, Un,

is a static snapshot of the state variable at some arbitrary time t ≥ 0. The updated state,

Un+1, after a small increment in time is obtained by computing the local Newton updates

for the global system and adding the nonzero updates to the old state.

Figure 1.3: Instantaneous change in the state variable over a small increment in time, δt,
and the corresponding nonzero Newton update.
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In the systems that are described by one of the canonical forms given by Equa-

tions 1.4.1 through 1.4.3, what will be the instantaneous spatiotemporal support in the

change in the flow and transport variables over a given time-step ∆t, and what parameters

does it depend on? This questions has to be answered for any heterogeneous and complex

system, independent of the choice of underlying spatial discretization.

Mathematically, at any given instant in time, t ≥ 0, suppose that we are provided

with the knowledge of the current states of the system; p(x ∈ D, t) and s(x ∈ D, t). We are

interested in the support of change in the state variables over an infinitesimal time increment,

δt ≥ 0. Analytically, instantaneous change in the flow over this time increment is given by

δp = ‖p (x, t+ δt)− p (x, t)‖ ,

which may be expressed in transport variable as

δs = ‖s (x, t+ δt)− s (x, t)‖

In Figure 1.3 this instantaneous change in the state variables is described by the rectangular

area confined between the states, Un and Un+1. In terms of Newton’s method, it is given by

the nonzero update, solid line, as shown in the lower half of the figure. We are seeking to

characterize the set of point that are incorporated in the compact spatiotemporal support

for the change in flow,

Ωp = supp (δp) ,

and in transport variables,

Ωs = supp (δs) .

In Figure 1.3 this conservative estimate is given by the dashed curve in the Newton update

(lower half of the figure). The Equations 1.4.1 are time dependent and generally highly non-

linear partial differential equations that are coupled through flow and transport inducing a

hybrid hyperbolic-elliptic character. Previous work on these equations suggest that obtain-
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ing an analytical solution for the general canonical case [17] is next to impossible. Hence,

instead of searching for the solution of the equation, it may be more analytically tractable

to derive a sharp and conservative estimate δ̂p,s such that

δ̂p,s ≥ δp,s ≥ 0

and subsequently we would obtain a conservative estimate of the support in the actual change

in state variable set since

Ωp,s ⊆ Ω̃p,s = supp
(
δ̂p,s

)
;

To characterize the support or the estimate of support, the canonical equation must be solved

analytically. There is no analytical solution for a general full form canonical equation. There

are solutions which make assumptions and reduce the set of equations into simplified ones.

The definitive determination of the support, Ωp,s,, or the estimate of support, Ω̃p,s,, hold

major applications.

1.4.4 Proposed approach: Analytical overview

The proposed approach takes the analytical route which aims at determining a priori

conservative estimate of the support, i.e. Ω̃p,s. The aim is to obtain a sharp universal estimate

which is independent of the underlying spatial discretization. This section introduces the

procedure to derive the abstract Newton’s iterations, and further on, case specific solutions

are provided.

In this thesis we will study the evolution of the state analytically. Instead of a vector

of states in the numerical simulation, here we will study state as a function of space and

time, given by

U (~x, t) : Ω ⊆ RN

Considering a general equation governing flow and transport systems described by
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R (U) =
∂a (U)

∂t
+ F (U,∇U,∆U)

and compatible boundary and initial conditions. The task here is to deduce the spatiotem-

poral support of the instantaneous change in the state variables over a small time step, ∆t.

The instantaneous change is given by

δ∆t = U (~x, t+ ∆t)− U (~x, t) .

The first step to characterize this change is to look for the solution of the equation formed

by the Newton’s iteration. The possibility of obtaining an analytical solution to the general

form is next to impossible. Hence, we go about by semi discretizing the equation in time

resulting in a partial differential equation continuous in space. The semi discrete form is

R
(
Un+1

)
= a

(
Un+1

)
− a (Un) + ∆tF

(
Un+1,∇Un+1,∆Un+1

)
(1.4.4)

In flow and transport systems, this equation is highly nonlinear and complex. Hence, to find

a solution, Newton’s method is used which translates the problem to a linear differential

equation given by Equation B.0.5.

R
([
Un+1

]ν)
= R′

([
Un+1

]ν) ([
Un+1

]ν+1 −
[
Un+1

]ν)
, (1.4.5)

where [
Un+1

]ν+1 −
[
Un+1

]ν
= δν+1; ν = 0, 1, 2..., n = 0, 1, 2...

which generates the Newton iterates. This flavor of Newton’s method is characterized as a

continuous fixed point iteration schemes, known as infinite dimensional Newton’s method [15].

Unlike the discrete or scalar Newton’s method, here we treat the residual equation as a non-

linear partial differential equation. For more information on infinite dimensional Newton’s

method, refer Appendix B.
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In Equation B.0.5, R is the nonlinear residual operator and is a functional(refer

to appendix A) of space and time. The derivative of a functional is computed using the

Frećhet derivative(refer Appendix A), which is the derivative of the residual equation that

is evaluated at the current iterate, [Un+1]
ν
, and applied onto the Newton update, δν+1. The

Frećhet derivative is given by

R′
([
Un+1

]ν)
δν+1 = lim

ε→0

R
(
[Un+1]

ν
+ εδν+1

)
−R

(
[Un+1]

ν)
ε

; (1.4.6)

The derivation of Equation 1.4.6 is also referred to as quasilinearization as it generates an

operator that is nonlinear in the state but linear in the current Newton update, δν+1. For

the functional forms of partial differential equations that we are focused on, Equation B.0.5

is invariably of the form

f (x) ∆δν+1 + g (x)∇δν+1 + h (x) δν+1 = −R
([
Un+1

]ν)
, (1.4.7)

where the variables coefficients f, g and h are general functions of the current Newton’s

iterate, [Un+1]
(ν)

(x), and its spatial derivatives. The coefficients have a variable behavior due

to the underlying heterogeneity that is present in the governing partial differential equation.

Equation 1.4.7 is linear in the unknown Newton update, δv+1, and can be solved at each

iteration, ν = 0, 1, 2, ..., to generate the sequence of Newton updates analytically.

1.4.5 Solution strategies for the infinite dimensional Newton iteration

Unlike the discrete Newton’s method, where a linear system of equation is solved to

obtain the unknown update, a partial differential equation must be solved at each Newton

step. This equation is described by Equation 1.4.7 where f ,g, and h are functions of the

update and space. Due to the variable nature of the coefficients, a closed form analytical

solution for the Newton’s iteration may not be possible. In the solution of large-scale alge-

braic linear systems, often indirect and preconditioned methods are used to obtain estimates

of the Newton updates. Similarly, instead of solving Equation 1.4.7, we will solve for a
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conservative, and yet sharp, estimate for the Newton update, δ̂(ν) such that it satisfies

∣∣∣δ̂(ν)
∣∣∣ ≥ ∣∣δ(ν)

∣∣ ; (1.4.8)

Consequently, an upper bound to the nonzero support of the change in the state variables

can be computed, since

supp
(
δ̂(ν)
)
⊇ supp

(
δ(ν)
)

(1.4.9)

The strategies adopted in this thesis to obtain the estimates that satisfy Equa-

tion 1.4.8 can be divided into two groups. The first group deals with the analytical ho-

mogenization of the variable coefficients appearing in Equation 1.4.7 on a global scale. The

second group deals with the exploitation of the principle of superposition and homogeniz-

ing the variables on a local scale. The second group can be loosely related to the domain

decomposition methods.

The analytical homogenization of the variable coefficients within the Frećhet deriva-

tive can be as simple as taking the supremum or infimum of the coefficients, such as

f ∗ = sup
x∈Ω

f (x);

There can be many different homogenization techniques that can be used to recast the linear

differential equation into a form which has constant coefficients. Equation 1.4.10 shows the

differential equation linear in the Newton update with constant coefficients.

f ∗∆δ̂ν+1 + g∗∇δ̂ν+1 + h∗δ̂ν+1 = −R
([
Un+1

]ν)
(1.4.10)

With a careful choice of the homogenization strategy, a conservative and sharp estimate to

the actual Newton update can be obtained.

Next is introduced a strategy which will prove useful in cases of disjoint local domains.

This exploits the linearity inherent to the problem and principle of superposition. The
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residual can be written as the sum of k bump functions,φi (x) where i = 1, 2, ...k. Each of

these bump functions have disjoint compact support, supp (φi (x)) = Di ⊆ Ω, i.e. Di∩Dj = ∅

where i 6= j. Residual as the summation of the bump functions is given by,

R
([
Un+1

]ν)
=

k∑
i=1

φi (x)

Substituting this definition of the residual operator, Equation 1.4.10 can represented as,

f ∗
k∑
i=1

∆δ̂ν+1
i + g∗

k∑
i=1

∇δ̂ν+1
i + h∗

k∑
i=1

δ̂ν+1
i = −

k∑
i=1

φi (x) (1.4.11)

The Newton update is obtained by,

δ̂ν+1 =
k∑
i=1

δ̂ν+1
i

This strategy is very important in situations where the support of the residual consists of

the union of a collection of strongly connected components.
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CHAPTER 2

THE FLOW EQUATION

Among the two sets of variables, flow evolves in an parabolic/elliptic fashion. In

the early times around the wells, the pressure variables show a local support, exhibiting a

parabolic wave nature. In a short time, the pressure waves reach the reservoir boundary,

showing relatively global support. At steady state, pressure shows elliptic wave characteris-

tics.

In this section we will derive the analytical estimate of the Newton update for the

flow problem. First, we will deduce a general Frećhet derivative of the decoupled canonical

flow equation given by Equation 1.4.2. Secondly, we will find the estimate of the solution

for the quasilinear infinite dimensional Newton iteration described by a linear differential

equation in the unknown update.

2.1 Infinite dimensional Newton iterations

The canonical form for the decoupled flow equation is given by,

RF (p) =
∂

∂t
a (p)−∇ [K (p)∇p] + w (~x, t) = 0 (2.1.1a)

where ~x ∈ D ⊂ R3, t ≥ 0 and boundary and initial conditions as,

K(p)∇p = 0 x ∈ ∂D, t ≥ 0, (2.1.1b)

p = p0 x ∈ D, t = 0 (2.1.1c)

Here, the boundary condition is described as a Neumann condition which is a no flow bound-

ary. Instead of this condition, a Dirichlet condition might be considered in cases where there
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is a constant pressure boundary maintained by an aquifer.

Towards the solution of Equation 2.1.1a, with auxiliary conditions given by Equa-

tion 2.1.1b and 2.1.1c, the first step is deriving the semi-discrete form, maintaining conti-

nuity in space. Applying the backward Euler discretization in time to Equation 2.1.1a, we

obtain,


RF(pn+1) = a(pn+1)− a(pn)−∆t∇[K(pn+1)∇pn+1] + ∆tw(x, t) = 0 x ∈ D ⊂ R3, t ≥ 0,

K(pn+1)∇pn+1 = 0 x ∈ ∂D, t ≥ 0,

pn=0 = pinit (x) x ∈ D ⊂ R3, t = 0

(2.1.2)

n = 0, 1, 2 . . .

As stated in the previous sections, Newton iteration produces the sequence of func-

tions, [
pn+1

]ν+1 −
[
pn+1

]ν
= δν+1; ν = 0, 1, 2 . . . , n = 0, 1, 2 . . .

where, δν+1 is the Newton update and is obtained as the solution to a linear differential

equation. Just to save some writing efforts, p(ν) is equivalent to [pn+1]
ν

from this point

onwards.

After transforming the general canonical form to the semi-discrete equation, we will

derive the Frećhet derivative for Equation 2.1.2. This step gives us a linear differential

equation with respect to the unknown update but still preserves the nonlinearity with respect

to space.

The first step towards deriving a Frećhet derivative is to add a perturbation in the

functional by an infinitesimal scalar quantity in the direction of the unknown update, δ(ν+1).

We are looking for the gradient between the current flow state variables and the perturbed

state, given by,

p(ν) + εδ(ν+1)
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The residual equation has to be evaluated at this perturbed state. This results in the

perturbed form of Equation 2.1.2,

RF(pν + εδν+1) =

a([pn]ν)−a(pν+εδν+1)−∆t∇[K(pν + εδν+1)∇
(
pν + εδν+1

)
]+∆tw(pν+εδν+1) = 0

(2.1.3)

Frećhet derivative is obtained using Equation 2.1.4,

R′F (pν) δν+1 = lim
ε→0

R (pν + εδν+1)−R (pν)

ε
(2.1.4)

and the result is given by,

R′F (pν) δν+1 = [a′ (pν) + ∆tw
′ (pν)] δν+1 −∆t∆

(
K (pν) δν+1

)
−∇

(
∂K (pν)

∂x
δν+1

)
(2.1.5)

where, ν = 0, 1, . . .. In the above equation, ∆ represents the Laplacian operator which is

given by the divergence of the gradient, ∇ · ∇. Equation 2.1.5 is the quasilinear differential

equation with respect to the unknown Newton update. We can further reduce this equation

by making proper substitutions, provided, ∆tK (pν) 6= 0. We can simplify the Frećhet

derivative by introducing a new variable,

δ̂ν+1 = ∆tK (pν) δν+1

Equation 2.1.5 becomes,

R′F (pν) δν+1 =

[
a′ (pν) + ∆tw

′ (pν)

∆tK (pν)

]
δ̂ν+1 −∆δ̂ν+1 −∇

(
1

∆tK (pν)

∂K (pν)

∂x
δ̂ν+1

)
(2.1.6)

The infinite dimensional Newton iteration can be formulated now and is given by,
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∆δ̂ν+1 − h (x) δ̂ν+1 +∇

(
1

∆tK(pν)
∂K(pν)
∂x

δ̂ν+1
)

= RF (pν) x ∈ D

∇δ̂ν+1
x=∂D = 0,

, ν = 0, 1, . . . (2.1.7)

where,

h (x) =
a′ (pν) + ∆tw

′ (pν)

∆tk (pν)

and RF (pν) is the nonlinear residual equation.In theabove equation,

∇
(

1

∆tK (pν)

∂K (pν)

∂x
δ̂ν+1

)

is the term which accounts for the spatial variation of permeability. The gradient of per-

meability with respect to the space variables is different for a heterogeneous case while for

a homogeneous case, goes to zero. For the present derivation, we will consider the gradient

of permeability to be zero and then try and consider the application of this estimate to the

heterogeneous case.

Equation 2.1.7 must be solved analytically to obtain a closed form solution of the

update. Since this equation is highly heterogeneous and complex, a closed form solution may

not be possible. As our strategy describes, we seek a conservative estimate to the actual

Newton update. For this purpose we employ a homogenization strategy which removes the

heterogeneity from the equation ensuring a conservative upper bound to the actual Newton

update. The objective of this step is to homogenize the coefficient h(x) in order to obtain a

simplified equation of the form,

∆δ∗
ν+1 − h∗δ∗ν+1 = RF (pν) (2.1.8)

where,

|δ∗ν+1| ≥ |δ̂ν+1| = |∆tK (pν) δν+1| (2.1.9)
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First, we note that depending on the sign of h∗, the linear homogenized equation is

either in the form of a screened Poisson equation (h∗ ≥ 0) or a Helmholtz equation (h∗ < 0).

In the case of screened Poisson equation, one of the homogenization strategies that is adopted

in this thesis is taking the largest value of the screening coefficient over the domain. The

homogenization that ensures a conservative estimate is

h∗ = sup
x∈D

h(x);

On the other hand, the Helmholtz equation produces Newton updates that are oscillatory

where the coefficient h∗ is the wave number or frequency. In the petroleum applications,

h(x) is always positive, and hence, we will assume the first case. Finally, the homogenized

linear Newton update problem becomes


∆δ∗

ν+1 − λ2δ∗
ν+1 = RF (pν) x ∈ D

∇δ∗ν+1
x=∂D = 0,

, ν = 0, 1, . . . (2.1.10)

where

λ =
√
h∗;

Equation 2.1.10 describes the general Newton iteration, which must be now solved for the

sharp but conservative estimate, δ∗
ν+1.

2.2 Analytical solution

To get the analytical closed form solution of the general canonical form is impossible

because of the heterogeneous and variable coefficients. Hence, we reduced the equation by

applying the infinite dimensional Newton concept to a linear differential equation which can

be solved for a conservative estimate of the actual update. Now we can solve Equation 2.1.10

using different analytical solution methods. The degree of dimensions govern the boundary

conditions and in some case free form analytical solutions on infinite domains. For this

reason, we will derive the solution for specific dimensions.
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Figure 2.1 describes the problem setting for the one dimensional case. The boundaries

are at x = 0, the origin, and x = 1, the right boundary. Every problem can be normalized

into this scenario. The source term in our case is a production/injection well with appropriate

well constraints.

The one dimensional homogenized linear Newton update problem with Neumann

boundary conditions is given by,



∂2

∂x2
δ∗
ν+1 − λ2δ∗

ν+1 = RF (pν) x ∈ [0, 1] ,[
∂
∂x
δ∗
ν+1
]
x=0

= 0,[
∂
∂x
δ∗
ν+1
]
x=1

= 0,

, ν = 0, 1, . . . (2.2.1)

where,

λ =
√
h∗.

Figure 2.1: One dimensional problem statement with no-flow reservoir boundaries.

Considering the form of Equation 2.2.1, Greens functions can be used to look for a

solution. The fundamental solution to,

∂2

∂y2
Φ (x− y)− λ2Φ (x− y) = δ (x− y) ,
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in the sense of distributions is well known. It is,

Φ (x− y) = − 1

2λ
exp (−λ |x− y|) .

Subsequently, if we can find a corrector function, l (y;x), satisfying,



∂2

∂y2
l (y;x)− λ2l (y;x) = 0, y ∈ [0, 1][

∂
∂y
l (y;x)

]
y=0

=
[
∂
∂y

Φ (x− y)
]
y=0

,[
∂
∂y
l (y;x)

]
y=1

=
[
∂
∂y

Φ (x− y)
]
y=1

,

(2.2.2)

then we can define the Green’s function,

G (x, y) = Φ (x− y)− l (y;x) ,

which produces the solution to Equation 2.2.1 in the form,

δ∗
ν+1 =

∫ 1

0

G (x, y)RF (pν (y))dy. (2.2.3)

In order to solve Equation 2.2.2, we will first write out the Neumann boundary

conditions, in other words, evaluating the fundamental solution at the boundaries. Noting

that the investigation point is always in the domain, x ∈ [0, 1], we have,

[
∂

∂y
l (y;x)

]
y=0

= −1

2
e−λx,

and, [
∂

∂y
l (y;x)

]
y=1

=
1

2
e−λ(1−x).

Subsequently, we obtain the corrector function, l (y;x), as,

l (y;x) =
1

λ (e2λ − 1)

[
cosh (λx) eλy + eλ cosh (λ (x− 1))e−λy

]
,
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and the associated Green’s function becomes,

G (x, y) =
1

λ


[sinh (λx)− µ cosh (λx)] cosh (λy) if x ≥ y

cosh (λx) [sinh (λy)− µ cosh (λy)] if x < y

, (2.2.4)

where,

µ =
e2λ + 1

e2λ − 1
.

Once we have the solution for the homogeneous equation, we can couple the inho-

mogeneous term with the Green’s function. This step deals with the decomposition of the

right-hand-side, RF (pν (y)), into the sum of k ≥ 0 bump functions. We are concerned with

the effects of a nontrivial residual, RF (pν (y)) 6= 0, for y ∈ [0, 1]. Suppose that the residual

consists of the sum of k ≥ 1 bump functions,

RF (pν (y)) =
k∑
i=1

φi (y),

each of which is supported over a connected interval,

Di = supp (φi) =
[
Lia, L

i
b

]
⊆ Ω.

Moreover, we can assume that the intervals are mutually disjoint; Di ∩ Dj = ∅, for i 6= j.

Hence, for points within the nonzero support, y ∈ ∪ki=1Di, the residual is nonzero, and

otherwise, it is zero. Finally, we can homogenize each of the constituent bump functions

independently. In particular, let the stationary point, y∗, be defined as,

y∗ = arg max
y∈Di
|φi (y)|,

and its corresponding value as,

φ∗i = φi (y
∗) .
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Then the homogenized form of the bump function is simply,

φ∗i (y) =


φ∗i y ∈ Di

0 y ∈ Ω−Di

.

Finally, the Newton update is obtained as the superposition of solutions,

δ∗
ν+1 =

k∑
i=1

δ∗
ν+1
i

=
k∑
i=1

φ∗i

∫ Lib

Lia

G (x, y)dy.

The last step includes the solution of the linear Newton updates to compute the esti-

mate. For the i-th bump function, we can obtain a corresponding Newton update component

by integrating the Green’s function (Equation 2.2.4). Because the Green’s function is defined

piecewise, we need to perform the integral for various situations.

First we will assume that the support of the given right hand side, Di, is a single point;

i.e., Lia = Lib = L∗. In this case, the bump function is a delta distribution, φ∗i δ (y − L∗). The

update in this case is simply,

δ∗
ν+1 = φ∗i

∫ 1

0

G (x, y) δ (y − L∗)dy

= φ∗iG (x;L∗) .

The analytical formula for the estimate to the update is therefore,

δν+1
∗,i ≈

φ∗i
∆tk (pν)

1

λ


[sinh (λx)− µ cosh (λx)] cosh (λL∗) if x ≥ L∗

cosh (λx) [sinh (λL∗)− µ cosh (λL∗)] if x < L∗

. (2.2.5)

Next, we will consider cases where the right hand side function has a nontrivial

support; 0 ≤ Lia < Lib ≤ 1. In this situation the Green’s function integral must be performed
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assuming three cases; the first assumes that x ≤ Lia, the second assumes that Lia ≤ x ≤ Lib,

and finally , the third that Lib ≤ x. The result is,

δν+1
∗,i ≈

φ∗i
∆tk (pν)

1

λ2


C1 [sinh (λx)− µ cosh (λx)] if x > Lib

1 + [cosh (λLib)− µC1] cosh (λx)− sinh (λLia) sinh (λx) if x [Lia, L
i
b]

[C2 − µC1] cosh (λx) if x < Lia

,

(2.2.6)

where,

C1 = sinh
(
λLib
)
− sinh

(
λLia

)
,

and,

C2 = cosh
(
λLib
)
− cosh

(
λLia

)
.

2.3 Connection to numerical simulation

The analytical deduction of the support of the instantaneous changes in the state

is connected to the discrete counterpart in numerical simulation. Specially, the infinite

dimensional and finite dimensional results are connected through the accuracy of the nu-

merical approximation. Consider a discrete domain, Ωh, with the discrete state variables

Un : Ωh ⊆ RN → RN . The finite-dimensional approximation to Equation 1.4.4 is the fully

discrete residual system,

Rh

(
Un+1

)
= Ah

(
Un+1

)
− Ah (Un) + ∆tFh

(
Un+1

)
= 0, (2.3.1)

where for some order of approximation, p ≥ 1, and with appropriate norms, ‖·‖, the error is

formally bounded as, ∥∥Un+1 − un (x)
∥∥ = O1 (hp) .

Newton’s method applied to Equation 2.3.1 is written as,

Jh

([
Un+1

](ν)
)

∆ν+1 = −Rh

([
Un+1

](ν)
)
, (2.3.2)
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where Jh is the Jacobian matrix and the discrete Newton update is defined according to,

[
Un+1

]ν+1 −
[
Un+1

]ν
= ∆ν+1.

It is stated without proof that the fully discrete Newton update, ∆ν , and the infinite-

dimensional update, δν (x), are also related by the approximation accuracy;

‖∆ν − δν (x)‖ = O2 (hp) .

Figure 2.2: Discrete continuum representing the numerical problem. Taken from the MAT-
LAB Reservoir Simulation Toolbox (MRST).

Figure 2.2 shows a hypothetical scenario where the analytical solution has to be

correlated to the numerical. Given the grid information, i.e. the position vectors or in nu-

merical words, grid block, source data and domain dimensions, we can evaluate the estimate

of the Newton update at any point in the domain. Using this information directly into

the analytical formulas derived in the prior sections will give us a quick estimation of the

spatiotemporal change in the state variables across the numerical simulation domain. This

holds many applications which will be discussed in the following chapters.
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2.4 Results and conclusions

The aim here is to obtain an estimation of the support of the actual instantaneous

change in the state variables, for a given time step, ∆t. The results are obtained for de-

coupled flow for one dimensional problems. Complications lie in the algorithm to create the

connection between the analytical results developed with the numerical simulation algorithm.

Comparison between the numerical update to the estimation obtained from the solution of

the analytical equations must result in a conservative estimate such that the support of the

numerical update is contained in the support of the analytical estimate,

supp
(
δ̂(ν)
)
⊇ supp

(
δ(ν)
)

One point to note is the analytical solution changes with the boundary conditions.

The partial differential equation remains the same but the values of the variable constants

change according to the nature of the boundary conditions. With the Neumann boundary

condition the boundaries are no-flow while with Dirichlet condition, pressure remains con-

stant at the boundaries. The first problem to be considered is a one dimensional flow problem

with no-flow boundary conditions. The domain is highly heterogeneous and the nonlinearity

in the functional terms is preserved. There is a source term at the center of the domain in the

form of a bottom hole pressure controlled well. On applying the analytical formula derived,

we obtain the green curve which is irregular in nature. This irregularity in the graph and

the lack of smoothness is due to the homogenization of the variables coefficients encountered

in the canonical equation. The blue curve which exhibits a smoothness in the curve is the

numerical update obtained from the one dimensional pressure simulation for a certain time

step, ∆t.

The aim here was to obtain a conservative estimate of the actual instantaneous change

in the state variables. In other words, support of the analytical solution must be a superset

to the support of the numerical update.

To prove this point, any grid cell undergoing a nonzero Newton update is given the
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Figure 2.3: Comparison between the analytical, green curve, and the numerical update,
blue curve, in the flow variables for one Newton solve.

value 1 while the cells with no instantaneous change are represented by 0. Figure 2.4 shows

the same for analytical and the numerical solution obtained. The cells exhibiting a change

in the state variables are represented by the line with a constant value of 1.0 while the rest

is null. In figure 2.4, the green curve represents the support of the analytical estimate and

the blue is the numerical update, wherein the estimate overshoots the support by a few grid

cells. This ensures that the instantaneous change is contained in the estimated support for

that particular time step.

It is claimed that for a heterogeneous case, irregularity in the curve for the analytical

estimate is due to the homogenization step. Hence, if the case possessed homogeneous

permeability field, the curve should be smooth and be an exact match to the numerical

solution. Figure 2.5 gives the comparison between the analytical and numerical solutions for

the instantaneous change in flow variables. Being a homogeneous case, the smoothness in

the solution is evident from the figure. Green curve which represents the analytical solution

is smooth and exactly traces the numerical solution as expected.
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Figure 2.4: Support of the analytical estimate is a superset to support of the numerical
update. Nonzero change in the state variable is given the value 1.0, otherwise it is 0.

To confidently state that the solution for a homogeneous case is almost exact, we will

flag the cells with nonzero change and compare both the solutions. Figure 2.5 shows the

same, which proves that the cells which are predicted to show a nonzero Newton update

exactly match the ones obtained from the numerical simulation.

Next, we studied the formulation of a single nonzero residual source. In other words,

the nonzero residual is transmitted to multiple cells from a single point. The situation is

different and much more complicated when there are multiple nonzero residual sources.

To observe the behavior of the analytical solution for more complex scenarios, multiple sink

and source terms are introduced by plugging in wells at different grid locations. Figure 2.6

shows the solution for multiple wells and comparison with the numerical update solution. It

can be easily observed that the analytical solution is a conservative estimate of the actual

newton update.

For a multiple well case, the comparison between the analytical and numerical solu-

tions can be seen in Figure 2.7. The irregular plot on the right is due to the homogenization
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Figure 2.5: Comparison between the analytical and numerical solution for the Newton
update for a homogeneous test case with a single point nonzero residual source. The support
of analytical and numerical solution match exactly.

Figure 2.6: Multiple nonzero residual sources which increase the complexity of the problem.
The analytical solution adapts to the inherent complex physics.
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Figure 2.7: Comparison between the homogeneous and heterogeneous problem for multiple
nonzero residual sources.

of the variable coefficients as discussed earlier in the sections.

An important test which must be performed is to refine the mesh to a greater degree

and observe the behavior of the absolute error in the analytical to the numerical solution.

One of the applications of the prediction of the instantaneous change in the variables is in

developing novel nonlinear solvers which allow a very refined grid throughout the domain

and adapt the computational kernel to the underlying spatiotemporal change. Figure 2.8

shows the relation between the resolution of the spatial discretization to the absolute error

in the estimate of the Newton update. As expected, as the resolution increases, i.e. the mesh

become finer the error decreases. The comparison is done between of 100, 500 and 5000 grid

cells. It can be observed that the error decreases from 10−2 to the order of 10−4 when the grid

size is changed from 100 to 5000 grid cells. This behavior is due to a better homogenization

in finer grids than coarse. If we employ a very complicated homogenization strategy it is

speculated that this error can be further decreased. To support this fact, we give the results

for a homogeneous case and compare the error for the same problem with a heterogeneous

permeability. Figure 2.9 shows the same and it can be confirmed that in the case where the

homogenization is close to ideal, the error is in the order of 10−9 whereas for its heterogeneous
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Figure 2.8: Studying the change in absolute error in the estimation of Newton update with
resolution of the spatial discretization.
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counterpart the error is in the order of 10−4.

Figure 2.9: Error in the homogeneous case compared to its counterpart heterogeneous
problem.

This concludes the spatiotemporal change estimation for the flow problem. We derived the

analytical expressions for the calculation of the instantaneous change in the flow variables

for a particular time step, ∆t. The analytical estimate can be correlated to the numerical

simulation with certain algebraic simplifications and a link is developed between the infinite

dimensional Newton to the finite dimensional Newton’s method. Then after, it is shown that

the estimate is conservative and sharp and the support of the numerical update is contained

in the support of the estimate. For homogeneous problem the error is in the order of 10−9
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and the support of the analytical estimate exactly matches support of the numerical solution.

The error in the estimation decreases with the increase in the resolution of discretization.

The error increases with the increase in degree of heterogeneity as shown in Figure 2.10.

This is due to the heterogeneity term neglected in the derivation of the analytical estimate.

To decrease this error and obtain close and conservative estimates, a new formula must be

derived which takes in consideration the heterogeneity in the physics. This information holds

wide range of applications which will be discussed in the following chapters.

Figure 2.10: Absolute error in estimation as a function of increasing degree of heterogeneity.

37



CHAPTER 3

THE TRANSPORT EQUATION

Flow equation being an elliptic equation exhibits a global support. Unlike pressure,

the transport equation behaves in a hyperbolic wave manner. The locality in the support

of the instantaneous change is governed by the nonlinear wave dynamics which forces the

transport variables to evolve in a strictly local fashion. This property helps preserve the

locality over a timescale that is on the order of years. It’s effortless to hypothesize that

determining the support of the spatiotemporal change in the transport variable is critical

to understand the behavior of a coupled flow transport system and further on to apply this

knowledge to complicated simulation problems including unconventional reservoirs.

The following sections deal with the mathematical derivations of the infinite dimen-

sional Newton iteration and the analytical solution to the estimate of unknown Newton

update.

3.1 Newton’s iterations

The canonical form of the decoupled transport equation is given by,

RT (s) =
∂

∂t
a (s)−∇ [f (s)] + w (~x, t) = 0 (3.1.1a)

where ~x ∈ D ⊂ R3, t ≥ 0 and boundary and initial conditions as,

f (s) · n̂ = 0 x ∈ ∂D, t ≥ 0, (3.1.1b)

s = s0 x ∈ D, t = 0 (3.1.1c)

Here, the boundary condition is described in terms of the fractional flow across the boundary,
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which can be a constant or zero. Similarly to the flow equation, to search for the solution of

Equation 3.1.1a, with auxiliary conditions given by Equation 3.1.1b and 3.1.1c, the first step

is deriving the semi-discrete form, maintaining continuity in space. Applying the backward

Euler discretization in time to Equation 3.1.1a, we obtain,


RT (sn+1) = a(sn+1)− a(sn)−∆t∇[f(sn+1)] + ∆tw(x, t) = 0 x ∈ D ⊂ R3, t ≥ 0,

f (sn+1) .n̂ x ∈ ∂D, t ≥ 0,

sn=0 = sinit (x) x ∈ D ⊂ R3, t = 0

(3.1.2)

n = 0, 1, 2 . . .

To obtain the Newton update a sequence of functions is generated,

[
sn+1

]ν+1 −
[
sn+1

]ν
= δν+1; ν = 0, 1, 2 . . . , n = 0, 1, 2 . . .

where δν+1 is the unknown Newton update which can be obtained by solving a linear differen-

tial equation. Henceforth, [sn+1]
ν

will be represented by sν to make the notations simplified.

The next step towards the solution is to derive the Frećhet derivative of the functional

given by Equation 3.1.2. This will result in a linear differential operator equation which is

linear with respect to the instantaneous change in the saturation variables, δν+1. We will

follow the same procedure as in the derivation of the derivative of the functional given by

Equation 2.1.2.

We will begin with writing the perturbed transport state in the direction of the

instantaneous change as,

s(ν) + εδ(ν+1)

Subsequently, the residual equation given by Equation 3.1.2 evaluated at the perturbed state
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become,

RT (sν + εδν+1) =

a([sn]ν)− a(sν + εδν+1)−∆t∇
[
f(sν + εδν+1)

]
+ ∆tw(sν + εδν+1) = 0 (3.1.3)

Frećhet derivative obtained by,

R′T (sν) δν+1 = lim
ε→0

R (sν + εδν+1)−R (sν)

ε
(3.1.4)

the result is given by,

R′T (sν) δν+1 = [a′ (sν) + ∆tw
′ (sν)] δν+1 + ∆t∇

(
f ′ (sν) δν+1

)
, (3.1.5)

where, ν = 0, 1, . . .. In the above equation, ∇ represents the gradient operator. Equa-

tion 3.1.5 is the quasilinear differential equation with respect to the unknown Newton update.

We can further reduce this equation by making proper substitutions, but is not as straight

forward as the flow problem. To further simplify the above equation, we need to understand

the underlying physical properties. f ’, being a vector, cannot be divided throughout the

equation to isolate the unknown Newton update, δν+1.

One of our strategy is to treat each vectorial component separately and derive dif-

ferent equations depending on the number of dimensions. After expanding and rearranging

Equation 3.1.6, the general equation is given by,

R′T (sν) δν+1 = ∆tf
′ (sν) .∇δν+1 + [a′ (sν) + ∆tw

′ (sν) + ∆t∇f ′] δν+1 (3.1.6)

The next step in the derivation is to derive the linearized Newton iteration which can be

solved for the unknown update. The infinite dimensional Newton iteration can be formulated

now and is given by,
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∆tf

′ (sν) .∇δν+1 + [a′ (sν) + ∆tw
′ (sν) + ∆t∇f ′] δν+1 = RT (sν) x ∈ D

δν+1
x=∂D = 0,

, ν = 0, 1, . . .

(3.1.7)

Furthermore, we can simplify the problem by introducing constants which results in,

RT (sν) = ∆tf
′ (sν) .∇δν+1 + [a′ (sν) + ∆tw

′ (sν) + ∆t∇f ′] δν+1 (3.1.8)

Equation 3.1.8 must be solved analytically to obtain the update, δν+1. The solution strategy

depends on the number of dimensions. For a one-dimensional case, Equation 3.1.8 is reduced

further provided,

∆tf
′ 6= 0

We can simplify the Frećhet derivative by introducing an intermediate variable,

δ̂ = ∆tf
′δ

Equation 3.1.8 becomes,

∂

∂x
δ̂ν+1 +

[a′ (sν) + ∆tw
′ (sν) + ∆t∇f ′]

∆tf ′ (sν)
δ̂ν+1 = RT (sν) (3.1.9)

Hence, the final reduced equation can be written as,

∂

∂x
δ̂ν+1 + h (x)δ̂ν+1 = RT (sν) (3.1.10)

or,

∂

∂x
δ̂ν+1 + h (x)δ̂ν+1 = R (x) (3.1.11)

In the multi-dimensional case the introduction of the new variable is not valid, i.e. ∆tf
′ is

a vector and division by a vector is not defined. Hence, the favorable strategy would be
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to separate each dimensional dependent term and writing the equation into a linear partial

differential equation form. In the case of three dimensions the final equation can be written

in the form,

∆t

[
f ′xî+ f ′y ĵ + f ′zk̂

]
.

[
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

]
δν+1

+ [a′ (sν) + ∆tw
′ (sν) + ∆t∇f ′] δν+1 = RT (sν) (3.1.12)

Hence, the final equation in three Cartesian dimensions can be written as,

αx
∂

∂x
δν+1 + αy

∂

∂y
δν+1 + αz

∂

∂z
δν+1 + β (x, y, z) δν+1 = R (x, y, z) (3.1.13)

where, αx = ∆tf
′
x, β = [a′ (sν) + ∆tw

′ (sν) + ∆t∇f ′] and R is the spatially varying residual

operator.

Equations 3.1.11 and 3.1.13 are the final linearized general Newton iterations, which

must be now solved for the unknown update, δν+1.

3.2 Analytical solution

In the previous section, we derived the general Newton iterations for the transport

problem in one and three dimensions. Unlike the flow problem, here we do not need to

homogenize the variable coefficients. Hence, we will directly seek the solution for these

differential equations analytically and establish the connections to the numerical simulation.

Now we will deal with the solution of Equations 3.1.11 and 3.1.13.

Figure 3.1 describes the one dimensional transport problem with water injection from

the left of the core, fully saturated with oil. The boundaries are at x = 0 and x = 1 with

Dirichlet condition. The equation to be solved is an ordinary differential equation with

spatially varying coefficient, h (x) and R (x). The one dimensional linear Newton update

problem with Dirichlet boundary conditions is given by,
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∂
∂x
δ̂ν+1 + h (x)δ̂ν+1 = R (x) x ∈ D

δ̂ν+1
x=∂D = 0,

, ν = 0, 1, . . . (3.2.1)

Figure 3.1: One dimensional problem statement with water injection from the left of the
core with zero initial water saturation.

Equation 3.2.1 is solved directly and the solution is given by,

δν+1 = −e−
∫ x

0 h(y)dy

∫ x

0
e
∫ x

0 h(y)dy R(u)du (3.2.2)

3.3 Connection to numerical simulation

In the previous sections we obtained the analytical solutions for the unknown Newton

updates for the transport problem. Being integral equations, its unrealistic to try and estab-

lish the connections to the numerical simulation. For this purpose, algebraic approximations

are developed which reduce the continuous integral solution into a discrete summation equa-

tion. The first step is to make an assumption on the spatially varying residual. We assume

that in one grid cell the residual value is constant and otherwise zero. This is shown in

figure reffig:transportResid, where the bump function is the actual residual but is approxi-

mated by the step function. The nonzero value spans over one grid block of size ∆xi and

hence the integral evaluated over the domain reduces to the product of the value residual in

that grid block and the size of the block.
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Figure 3.2: Approximation of the nonzero residual in one grid block by a constant step
function.

Subsequently, Equation 3.2.2 reduces to

δν+1 = −exp
(
−
∫ x

0

h(y)dy

)
exp

(∫ xi

0

h(y)dy

)
Ri∆xi. (3.3.1)

The only integral terms remaining are the exponent terms which span over the grid blocks.

Spatial integration can be written in a discrete form by introducing summation operator

which results in a conservative estimate of the unknown Newton update. The integral term

can be rewritten as

∫ x

0

h(y)dy =

i(x)−1∑
i=1

h[i] Dx[i],

where h[i] is the value of the coefficient evaluated in the ith grid cell and Dx[i] is the size of

that particular grid cell.

Finally, the discrete summation equation can be written as

δν+1 = −exp

i(x)−1∑
i=1

h[i] Dx[i]

 exp

i(xi)−1∑
i=1

h[i] Dx[i]

 Ri∆xi, (3.3.2)

where δν+1 is derived from the analytical formulation and applied onto the discrete mesh.

As the derivation comes from the analytical equation, it is independent of the underlying

discretization and can be projected onto any spatial discrete domain.
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3.4 Results and conclusions

The aim here was to formulate an analytic method which gives us precisely where is

the instantaneous change taking place in the state variables in the spatial domain irrespective

of the underlying discretization. The results presented in this section deal with the decoupled

transport variables for a one dimensional reservoir. Water injection, Sw = 1.0, is from the

left of the core with an initial water saturation of 0.0.

Application of the analytical formulas result in the green curve in Figure 3.3. This is

the estimated update in the saturation variable for a Newton iteration with a physical time

step, ∆t. The numerical update is represented by the blue curve (with circle markers), which

results from the numerical solution of the nonlinear governing equation. As can be observed,

the analytical estimate is a smooth curve in the case of transport, unlike in the case of flow.

This is mainly due to the absence of any homogenization process in the derivation towards

the solution of the infinite dimensional Newton iteration for saturation.

Figure 3.3: Analytical estimate vs. numerical update in the transport state variables for
a water injection problem for one Newton iteration. Water injection is from the left of the
core.

Figure 3.3 shows the saturation update curve for the first iteration with the first grid cell
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acting an a nonzero residual source. Hence, the curve has a monotonic decline as we move

towards the other end of the core.

After the first iteration, the scenario complicates due to the introduction of multiple

nonzero residual sources caused by the traveling saturation front. Figure 3.4 gives one such

scenario of an update at an iteration, ν > 1. As can be seen in this case, analytical solution

predicts the update behavior closely and the estimate obtained is still conservative.

Figure 3.4: Analytical estimate vs. numerical update in the transport state variables for
multiple nonzero residual sources in one dimension.

Similar to flow, we present the figure showing the spatiotemporal support for analytical and

numerical update. In Figure 3.5 the cells which show a nonzero Newton update for that

iteration is given the value 1.0, while the cells which undergo no change in the saturation are

given the value 0. As can be observed from the figure, the support of the analytical update

matches the support derived from the numerical simulation.

A very important aspect to be considered here is the connection between the discrete

Newton’s method to the infinite dimension Newton’s iteration. If δ̂ is the analytical solution

to the governing transport equation and δ∗ is the numerical solution obtained from discrete
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Figure 3.5: Spatiotemporal support of the analytical estimate and the numerical update for
a one dimensional transport problem.
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Newton’s method then,

δ̂ = δ∗ + ε

Where, ε is the discretization error in the spatial domain. The theory we are following in this

thesis is to derive an estimate, which is always an upper bound to the analytical solution given

by δ̂. Instead of the discrete Newton’s method, infinite dimensional Newton’s iteration is

used to linearize the equation and solve for the update. Will the estimate generated through

this method always be an upper bound to the discrete Newton’s method? Specifically, for a

very coarse grid, will it still produce a conservative upper bound estimate?

Theoretically, it is very difficult to answer this question because of the inability to

determine the magnitude of discretization error for different grid sizes. To answer this

question for our specific cases, we present the simulation results of the same problem with

different discretization resolution. Figure 3.6 shows the comparison between grid size of 100,

500 and 5000 cells. As it can be observed, the error increases as the grid coarsens but the

estimate is still quite conservative to the discrete Newton’s solution.

This concludes the derivation of estimates for spatiotemporal change in the transport

variables. In one dimension the estimates are very local and an upper-bound to the discrete

update. For the multiple dimensional cases, the equation is very difficult to solve because

of the variable coefficients in space. Alternative solution strategies will be explored in the

near future. Being a hyperbolic Partial Differential Equation, the evolution of state is very

local. This property can be exploited to develop certain solvers that can be adapted to the

underlying physics to increase the computational efficiency.
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Figure 3.6: Comparison between the error in estimation of the analytical update for different
discretization resolutions. (a),(c) and (e) show the analytical and numerical solutions to the
transport problem. The corresponding error in estimation is given by (b),(d) and (f). As
observed, finer the resolution, smaller is the error.
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CHAPTER 4

APPLICATION: NONLINEAR SOLVER

Analytical equations are derived for flow and transport systems which give us a conser-

vative yet sharp estimate of the instantaneous change in the state variables. This information

has far reaching applications. Consider the scenario described by figure 4.1, which shows the

iteration graph of one dimensional Buckley-Leverett problem. The thick red lines are the

converged state values for some initial time, t1, and the final time, t2. The lines enclosed

between these two lines are Newton iterates which eventually converge to the final state. As

evident from the figure, for any Newton like method, the least number of iterations taken

for the state to converge for a time-step size of ∆t is equal to the number of blue lines.

Figure 4.1: Iteration graph for one dimensional Buckley-Leverett problem. χ is the span of
the time step and β is the span of each iterate.

This can be roughly summarized as upperbound on the convergence rate for the par-

ticular problem. Our aim here is to expedite the iterative process. Out of many possible

ways, the two most promising are, either to adopt non-Newton like methods which might

produce the solution in one step or expedite each iteration which will eventually lead to a

faster iterative process. The latter approach will be taken in the thesis, and we will discuss
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strategies to expedite the iterations. Figure 4.2 shows 4 Newton iterations for the pressure

solve, wherein the nonzero Newton updates are given by the colored surface. The purpose

of this figure is to figuratively describe the Newton’s process for physical problems. In most

of the cases, the Newton update is very local, but due to the inability to detect the nonzero

update cells, we need to solve the full linear system in order to obtain the solution.

Figure 4.2: Nonzero Newton updates for 4 pressure iterations. Figures shows the reduced
Jacobian size to exactly match the nonzero updates.

In that case, to obtain a few nonzero Newton updates, we are solving the entire

system, which produces zero updates in the rest of the domain.

What if there was an exact method which provides you with the information on which

cells are going to experience a nonzero Newton update a priori? Having this information

will let us adapt our computational kernel to exactly modify the size of the linear system

to match the nonzero Newton updates. We are already equipped with an analytical exact

method which gives an estimate of support of the instantaneous change in the state variables,

which is described in the previous chapters. Revisiting figure 4.2, we can show that the size

of the linear system can be reduced from the entire domain to exactly match the size of the
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black square encompassing the spatiotemporal support of the nonzero change. Reduced linear

system size reflects directly on the size of the Jacobian and the size of the matrix reduces to

the size of the black square in Figure 4.2. The most computationally expensive step is the

inversion step required by the Newton’s method. The two critical parameters which affect

the computational time are the sparsity pattern and size of the Jacobian matrix. In a fixed

physical setting, the reduction in the size of the Jacobian does not alter the sparsity pattern,

because the physics is not altered. Consequently, the smaller the matrix size, the cheaper is

the linear solve.

4.1 Localization

As discussed earlier in the chapters, modeling of fluid flow in porous media deals with

the solution of governing equations which involve the coupling between flow and transport.

These equations are highly complex and nonlinear with respect to the state variables which

vary with space and time. To solve these equations numerically, Newton’s method is used,

which is a type of local single point iteration method. The intermediate step in this method

is linearization of the governing equations and performing a linear solve which includes

inversion of the Jacobian matrix. The inverse of the Jacobian multiplied with the Residual

vector gives the Newton update.

The property of Newton update we will exploit in this thesis is the locality. Locality

in the physics of a problem is reflected in the update vector. The more locality present in

the governing equations, the more local is the update in the state variables. This is well

presented in Figure 4.2, where the pressure update is nonzero at places which show a local

change in physics. The concept here is to perform computations only at the places where

there is an instantaneous change in the state.

This algorithm is a three step paradigm - Detect, Adapt and Solve. The detection step

includes the estimation of the spatiotemporal change in the state variables and translation of

the analytical result in the form of numerical discrete solution. After we have the information

of where exactly the change is happening in the domain, we can adapt the size of the problem
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to exactly match the grid cells showing a nonzero instantaneous update. Detection and

adaptation are shown in Figure 4.3, where the pressure update distribution shows the sparse

Newton update, and the detection gives us the red rectangular area. The cells which will

experience a change in that iteration are flagged and are the only ones that need to be solved.

Figure 4.3: Flagging the cells which show a nonzero spatiotemporal change and adapting
the computational kernel to the underlying physics.

Figure 4.4: Localization: reducing the size of the linear system to exactly match the under-
lying spatiotemporal change in the state.

Figure 4.4 shows the third step which involves the solution of the reduced system

of equations, i.e. equations of those grid cells which show a nonzero update. The reduced
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size of the linear system is given by the red square. This is the case where the subdomains

to be solved are connected. In the case of disjoint nonzero residual sources which form

localized groups, there are multiple strategies to perform the linear solve. First strategy is

to transform the disjoint problem into a single domain problem. This is possible in the case

of localization because the different subdomains do not interact with each other. Figure 4.5

shows two subdomains which are fused into a single dense block of nonzero updates. This

reduced block can be solved using any sequential linear solver.

Figure 4.5: Fusing two disjoint subdomains into one dense block and solving it sequentially.

Another strategy which is more attractive is to keep the subdomains distinct and solv-

ing two systems separately. Figure 4.6 shows one such scenario where the disjoint subdomains

are formed due to multiple nonzero residual sources. Due to the fact that the subdomains

are independent of the state variables of the other domains, these distinct systems can be

solved in parallel, resulting in an increase in the computational efficiency.

Figure 4.6: Multiple disjoint subdomains can be solved independent of the other in a parallel
linear solver.

In a broad sense, the localized nonlinear Newton solver is given by Algorithm 1 where

N is the total number of grid cells being simulated and the subscripts g and l stand for global
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and local values respectively.

Algorithm 1: Localization with embedded sptiotemporal estimation

Data: [Un+1]
ν → state at the previous iterate

input : Rg (Un+1;Un,∆t)

output: [Un+1]
ν+1 → updated state for the iterate ν + 1

while OUTiter < MAXITER and ||Rg (Un+1;Un,∆t) || > TOL do

for i← 0 to N do

supp(δ̂) from the analytical formulas derived for the spatiotemporal change ;

end

Activeset l← i if δ̂i > 0;

while INiter < MAXITER and ||Rl (U
n+1;Un,∆t) || > TOL do

δl ← −Jl
(
Ul

n+1;Ul
n,∆t

)−1Rl

(
Ul

n+1;Ul
n,∆t

)
;

for j ← 0 to l do

if Uj is a saturation variable then

Uj ← UPDATE SAFEGUARD METHOD (Uj, δj)

end

end

INiter ← INiter +1;

end

OUTiter ← OUTiter +1;

end

The first step is to perform the analytical-numerical correlation to compute the sup-

port of the spatiotemporal change in the state variables. Following this, we have to flag

or delineate the cells which are predicted to show a nonzero update for that iteration and

then reduce the linear system to be solved. The actual computations are performed only

locally on the subdomains generated by the second step. The update step is just adding the

solution to the old state, and any safeguard can be used in this place. In this thesis, we
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limit ourselves to the use of Modified Appleyard safeguard. The spatiotemporal change is

computed at each iteration level for the global system of equations, thus making the solver

compute the instantaneous changes in the physics. This results in a dynamically adaptive

nonlinear Newton solver.

In later sections we will discuss the results for multirate solver with localization, used

to solve decoupled pressure and saturation systems.

4.2 One dimensional transport problem

Transport variables evolve with a hyperbolic wave nature. As discussed already, the

more the locality, more the sparsity in the Newton update and this reflects to the fact that

a whole lot of computational time goes into inverting a matrix which results in only a few

nonzero entries. Applying the above algorithm to similar transport problems, we present the

results for one dimensional cases with a certain degree of locality in the underlying physics.

Figure 4.7: Size of the linear system solved at every Newton iteration for a transport problem
with a certain physical time step, ∆t.

The comparison is done between the traditional Newton’s iteration with modified
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Appleyard safe update. This would force the solver to consider a linear system of a size

equivalent to the size of the domain. On the other hand, we consider the localization algo-

rithm which reduces the size of the linear system to exactly match the grid cells showing a

nonzero instantaneous change in the state variable.

Figure 4.7 shows a Newton iteration graph where each red cross indicates the inclusion

of that particular grid cell, given on the x-axis, in the Newton iteration given by count on

the y-axis. Each horizontal line formed by the crosses is the size of the linear system solved

at each Newton iteration for the simulation of the transport problem with a physical time

step of ∆t.

Figure 4.8: Size of the linear system solved at every iteration using spatiotemporal estimation
along with localization for the transport problem.

Figure 4.8 shows the Newton iteration graph for the localization solver. Due to the

strictly local evolution of the transport component, the resulting spatiotemporal support is

compact and limited to a small number of grid cells. Similar to the previous figure, each

red line represents the size of the linear system solved at every iteration, which in this case

matches the size of the cells that show a nonzero Newton update. In this particular case,
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water injection is from the left of the core, which results in one direction wave propaga-

tion. In a problem with multiple wells in the region, there will be distinct subdomains of

nonzero spatiotemporal change propagating in every direction governed by the underlying

heterogeneity.

These results reflect a proof of concept that to solve hyperbolic equations or transport

type problems, we do not need to solve the entire grid in order to get the solution. In

petroleum systems, simulating compositional properties lead to several governing equations

which are hyperbolic or semi-hyperbolic in nature. Using the same concept for the solution

of compositional equations may lead to enhanced computational efficiencies, but this topic

is of future research interests.

In the above case, the linear system size was reduced from 500 to around 10 grid

cells. This means, for transport the number of grid cells undergoing a change is utmost 10

for that particular time step of ∆t. The gain in computational efficiency is due to the cheap

linear solve and summed up over several iterations, resulting in a total computational save

equivalent to all the white space given in Figure 4.8.

4.3 One dimensional flow problem

The second application we will discuss now is the simulation of flow problems. Unlike

transport, flow is parabolic/elliptic in nature which results in a more global evolution. In

many situations the pressure evolution behaves very locally, such as near wells at early

times. Later in the time, flow evolves globally but with different magnitudes with some

cells undergoing a significant update, while the rest changing just a bit. To simulate this,

we can apply the detection concept discussed in the previous chapters which gives us the

information regarding which cells will show an instantaneous change over that time step and

then limiting the size of the linear system to the size that exactly matches the number of

cells contained inside the nonzero spatiotemporal support. This is called localization. Other

strategies will be discussed in the next chapter where the solution strategy is decided by the

rate of change of the state variables.
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Figure 4.9: Size of the linear system solved at every Newton iteration for a flow problem
with a certain physical time step, ∆t.

Figure 4.10: Size of the linear system solved at every iteration using spatiotemporal esti-
mation along with localization for the flow problem.
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Here we will consider the decoupled flow problem in one dimension, shown in Fig-

ure 4.9. For the first case, we will consider one injection and one production well at the two

extremes of the reservoir.

Figure 4.9 presents the information of where and when did the Newton iterations take

place. Similar to the transport problem, each red cross shows the inclusion of that grid cell

in the linear system. Size of the red line gives the size of the linear system to be solved for

that iteration. Figure 4.10 shows the reduced system for the localization case. Generally for

the case of flow, the state exhibits a global evolution. In the case of localization, the worst

case will be equivalent to the traditional Newton’s iterations.

Figure 4.11: Pressure profile for a multiple well case. There is a producer at the center of
the grid and at the edge while the injector well on the other extreme of the reservoir.

Let us now consider a case with increasing complexity. In a one dimensional reservoir,

we will consider 3 wells which are located at the corners and at the center of the domain.

For one particular time step, this simulation takes 3 Newton iterations which are shown in

Figure 4.12. The pressure profile for this scenario is given in Figure 4.11. For this case, the
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evolution of pressure is considerably local, and the evolution of the spatiotemporal support

can be seen the the figure. First, the changes are only around the wells, and as the iterations

proceed, the span of nonzero support grows outwards from the wells.

Figure 4.12: Newton iteration graph for the multiple well case. The size of the linear system
is the union of the subdomains.

Concluding, we observe that for transport problems, the evolution is strictly local,

which results in a small set of cells which show a nonzero update. While in the case of

flow, update might be global, but the important thing is that the discrete updates have

different magnitudes where the majority possess very insignificant values. This property will

be exploited in the next chapter.
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CHAPTER 5

DISCUSSION

We derived the analytical formulas for the estimation of the instantaneous spatiotem-

poral changes in flow and transport and developed connections between the the analytical

information to the numerical scheme. The main aim here was to perform calculations only

at the places where required. In other words, to determine which cells will show a nonzero

Newton update was the first step. With this information, the cells with zero instantaneous

change were neglected from the computation thus reducing the size of the linear system

which results in a cheaper computation.

Up till now, the derivations were carried out for decoupled flow and transport. Due to

the complex equations which need to be solved, for multi-dimensional cases, the solutions to

these equations are difficult to obtain. For that purpose semi analytical-numerical solutions

will be adopted in the future which have complexity less than O(N).

One of the methods to reduce the algorithmic complexity of detecting the spatiotem-

poral support is to solve for the radius of nonzero support instead of solving for the update

in each grid cell caused due to every nonzero residual. The linear Newton iterations can be

directly solved for the radius which produces a nonzero Newton update. Mathematically,

instead of solving the equation for δν+1, we can solve for x in the case of δν+1 > 0.

There are many advances possible on the application of these analytical formulas

derived which concentrate on the nonlinear solver. One important step forward in the future

would be to adapt the solver to the rate of change of the state variables. This will be

discussed more in the following sections.
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5.1 Newton flow

The concept discussed in the previous chapter deals with localization. The domain

is flagged into two groups, cells that show a nonzero Newton update and cells that do

not. Actual computation is only performed on the cells which are predicted to show an

instantaneous update in the state variable. The Newton’s method for the reduced system

remains the same and is discrete. To further our research in this area we can write the

discrete Newton iteration given by,

[
~Un+1

]ν+1

−
[
~Un+1

]ν
= −J−1R

(
Un+1;Un,∆t

)
in a continuous form as,

dUn+1

dν
+ J−1R

(
Un+1;Un,∆t

)
= 0 (5.1.1)

Discrete Newton’s iterations can be summarized as a fixed point iteration strategy using a

first order finite difference with unit step size, ∆ν = 1. We will refer ν as the embedded time

step which is completely independent of the simulation time step, ∆t, which is fixed for the

Newton iteration.

The next step in this research is to extend the localization algorithm to a multirate

implementation in the Newton embedded time, independent of the physical time step. Hence,

the concept of multirate will be applied on to the solver and not onto the numerical scheme

which has been done in the past.

5.2 Multirate solver

Revisiting the solution process of physical processes in the subsurface, we recollect

that the Newton’s iteration is used to solve the system of equations. We previously showed

that the Newton’s update is very sparse in cases of highly local physical changes and applied

localization to solve this system. Concentrating on the behavior of flow and transport, the

latter behaves in a very local manner, owing to its hyperbolic nature. Talking about the
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former, at very early times around the wells, pressure evolves in a local manner which in

a matter of time changes globally. Global change results in a global update which means

the active set will be the entire domain, which will be similar to solving the entire grid with

Newton’s method. Usually the scenario where there is a global change in the update is given

by a hypothetical case described in Figure 5.1. In most of the physical cases, the pressure

update is global but small in magnitude except places with high nonzero residual values.

Figure 5.1: Hypothetical pressure update which has a global support but with majority of
cells experiencing infinitesimally small update.

In the figure above, the update can be divided into 3 or more partitions. Cells

with a steep gradient of change, cells with intermediate rates and the rest are with no or

infinitesimally small change. Unlike in localization, where there were two subdomains i.e.

the cells that shows a change and those which have zero update, in multirate implementation

there will be several subdomains depending on the rates of change of the state variables.

Flagging of these cells is shown in Figure 5.2. Instead of two levels in localization,

here there are several number of subdomains depending upon the partition criteria. This

strategy makes it more efficient because the cells which do not show a steep gradient might

just require 1 iteration to converge to the solution, while those few cells with a bigger

instantaneous change can be solved with more iterations. This will result in a bigger save in

terms of computations.

For transport problems this strategy will perform efficiently because the interaction

between levels of change is not considerable. But for the case of flow, we will need to device
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Figure 5.2: Flagging in a multilevel solver, where the subdomains are formed on the criteria
of rate of change of state variables.

expensive synchronization strategies which take care of the interaction between different

levels. This is because, the variables in one cell are tightly dependent on the state in other

grid cells, thus changing the convergence rate for Newton’s iterations.

There are many more applications of these ideas, such as development of parallel

scalable solvers for implicit simulations, characterization of Newton iteration’s convergence

rates, exploiting locality and understanding the behavior of flow and transport in uncon-

ventional reservoirs, etc. The key lies in deriving closed form analytical estimates of the

infinite-dimensional Newton iterations and developing links to the spatial discretization.
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APPENDIX A

FRÉCHET DERIVATIVE

The definition of a derivative in a very general sense can be given by,

∆hf(X0) = Λ(X0;h).h+ ξ(X0;h) (A.0.1)

Here, Λ(X0;h) is a constant (which depends on X0 and h) and ξ(X0;h) has the property,

lim
h→0
|1
h
||ξ(X0;h)| = 0

The derivative of functionals differ from scalar valued functions because the gradient is

computed on a vector quantity. Due to this, the traditional definition of a derivative fails

as the division by a vector quantity is not defined. For this purpose, the derivative of a

functional is given by Fréchet derivative, which states that an infinitesimal increment in the

functional, F(X0), evaluated at X0 is given by F(X0 + s~h), where, the increment, s, is in

the direction of a vector, ~h.

Using Taylor series expansion and some algebraic manipulation, we arrive at the

equation when s→ 0,

lim
s→0

F(X0 + s~h)−F(X0)

s
= ~h.F ′(X0) + lim

s→0
O(s.~h) (A.0.2)

Here the term lims→0O(s.~h) = 0 due to the higher orders of s. As it can be observed from

the above equation, the remaining terms in the expression are all linear in ~h. Hence, this

operator results in equation linear in the vector on which the derivative is computed. The

final equation is given by,
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F ′(X0)~h = lim
s→0

F(X0 + s~h)−F(X0)

s
(A.0.3)

Where, F ′(X0) is the Fréchet derivative evaluated at X0 and acting on ~h.

Note : Fréchet derivative exists only where Gateaux derivative exists and satisfies

the condition given by equation (A.0.4), which is a limiting term in the generalized form of

a derivative shown in equation (A.0.1)

lim
||h||→0

||ξ(X0;~h)||
||~h||

= 0 (A.0.4)
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APPENDIX B

INFINITE DIMENSION NEWTON’S METHOD

The first order discretization in time of the Newton flow Partial Differential Equa-

tion (PDE) results in the discrete Newton’s iteration, which is used for for solving discrete

nonlinear systems. Finer discretization leads to a more exact Newton’s method. The finest

discretization results in a continuous Newton’s iteration which is also knows as infinite di-

mensional Newton’s method.

To apply Newton method on discrete systems, we have the discrete Newton’s iteration

but in order to apply Newton’s method directly on to PDEs, the continuous form must be

employed. For this purpose, we need the function which is the PDE itself and its derivative.

A continuous derivative of a particular group of PDEs, in our case functionals, is given by

Fréchet derivative described in APPENDIX A.

Infinite dimension Newton operation on a PDE will result in a quasilinear equation

which then can be solved analytically or in a linear solver. The continuous Newton formu-

lation can be given by,

F
([
Un+1

]ν)
= −F ′

([
Un+1

]ν) · δν+1; (B.0.5)

where, F ′ is the Fréchet derivative evaluated at [Un+1]
ν

and is acting on δν+1, which is the

continuous update or in other words, analytical update to the particular iteration.

Refining the discretization in the Newton flow PDE results in different accuracy New-

ton iterations. It is studied that with comparable initial guesses all the flavors of Newton’s

iterations show the convergence behavior on all sufficiently fine discretizations. This is given

by the theory of asymptotic mesh independence. For further details, please refer to [15].

73


