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The economic effectiveness of petroleum reservoir development largely relies on a 

proper design of the well control strategy. However, decision-making for the bottom hole 

pressure (BHP) schedule is challenging due to the lack of accurate information about the 

geologic formation and fluid properties. Engineers have to resort to techniques such as well 

logging and well testing to obtain information about the subsurface reservoir. But these 

methods are usually very expensive and time-consuming. 

The wellhead production data, however, already offers valuable information about 

the underground rock and fluid properties. The reservoir history matching utilizes the 

surface data to reduce the uncertainty of the model. Combined with production 

optimization, it becomes a powerful tool to assist in decision-making of reservoir 

management. Nevertheless, it could be challenging to choose an appropriate prior model 

when only a weak reservoir characterization is available. Even if a random model is 

selected and matches the data perfectly, it may still be far from the true model due to the 

non-uniqueness of the solutions to inverse problems and thus not be able to predict future 

production accurately. 
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An alternative data-driven algorithm is proposed in this work to enhance the 

production from fractured unconventional reservoirs where limited knowledge of the 

reservoir is available. Requiring nothing more than production data, the method provides 

an active control decision-making workflow that is easy to apply in practice. The wellbore 

pressure is constrained to drop or hold in order to test how the reservoir responds and a 

decision will be made for the next BHP control step based on the response of the current 

step. The reservoir surface response is determined by the interaction of underground static 

and dynamic variables. The core idea of the algorithm is that, instead of making an the 

effort to calibrate the static variables and then predict the interaction of the dynamic 

variable, the study focuses on correlating the surface response and the optimal BHP 

controls directly. An analysis is carried out to explain this correlation in detail.  

The proposed method is compared with optimization solutions and a naïve solution. 

It is proven that the data-driven method performs similarly to computational optimization 

solutions that assume complete knowledge of the system. Moreover, it is demonstrated that 

naïve control strategies can lead to non-optimal results. 
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CHAPTER 1 

 

CHAPTER 1: INTRODUCTION 

 

 

 

The production decision-making of reservoir management relies on the prediction 

power of a reliable reservoir model. This model can be a physics-based mechanistic model 

such as a 3D multi-phase model or a simplified 1D radial proxy. A physics-based model is 

more interpretable, but it requires accurate characterization of the reservoir to improve its 

prediction power. A complete characterization should involve knowledge of not only 

reservoir engineering but also petrophysics, geology, geomechanics, geophysics, and etc. 

However, such a comprehensive model is usually not available at the early stages of 

reservoir development. From the perspective of a reservoir engineer, an initial reservoir 

model should be established based on the direct measurement data and can be iteratively 

improved through inference techniques which make use of history data. 

 

Figure 1.1 Flow Chart on How A Reservoir Model is Built and Improved 

 

Most of the strategy making tools like model-based optimization heavily rely upon 

a well-characterized reservoir model which is not always accessible. In this study, a data-
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driven algorithm is proposed to improve the production from fractured unconventional 

reservoirs where very limited information about the geologic formation and fluid properties 

are available a priori. Rather than making significant efforts to build an explicit 

comprehensive model, the proposed method takes advantage of the specific surface 

response patterns of the fractured reservoir and correlates them with the best production 

strategies. 

The method offers an active control decision-making workflow that is easy to apply 

in practice. Through synthetic test cases, the proposed method is proven to perform 

comparably to computational optimization solutions that assume complete knowledge of 

the system. Moreover, it is demonstrated that naïve control strategies can lead to solutions 

which are far from the optimal results. 

 

Figure 1.2 Info Flow Chart of the Proposed Data-Driven Algorithm 

 

 

 

1.1 Literature Review 

 

Computational production optimization, also known as model-based optimization, 

is a powerful tool to develop an improved operating plan for a particular reservoir of 
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interest. The algorithm approaches the optimal solution by searching the high-dimensional 

variable space. Because the optimization involves the prediction of future production, it 

requires a reservoir simulation model to serve as the estimator of the objective function 

(usually, it is the life-cycle net present value (NPV)). Optimization algorithms can be 

divided into two categories: derivative-free methods and gradient-based methods. An 

important distinction is between the methods that attempt to find the global optimum and 

those that aim at finding a local optimum (Jansen, 2009). A naïve optimization method 

relies on a single model to make decisions. The inaccuracy of such model would 

significantly undermine the performance of the optimization. 

One of the greatest challenges of the model-based optimization is making decisions 

in the presence of large uncertainties about the subsurface structure and the parameters that 

influence the production (Jansen, 2009). There are three major ways to deal with the 

uncertainty: robust optimization, multi-objective optimization, and closed-loop 

optimization. Jansen et al. (2005) were among the first to utilize the robust optimization 

for generating the optimal production plans. A set of plausible geological models (also 

known as ensembles of geological realizations) is considered to represent the uncertainty. 

The expectation of the NPVs over a set of possible reservoir realizations is regarded as the 

objective function. Based on the concept of robust optimization, Liu and Reynolds (2015) 

provided a multi-objective optimization algorithm to maximize the expectation of NPVs 

and minimize the risk simultaneously. Specific methods applied include the classical 

weighted sum method and the normal boundary intersection method. Chen (2009) and 

Jansen (2009) proposed a closed-loop optimization framework. In their work, they 

introduced a system consisting of two parts: geological model updating and robust 
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production optimization. The optimization process follows an iterative workflow where the 

geological model is updated continuously to be consistent with the production data through 

the data assimilation process, and an optimized strategy is chosen based on the updated 

model. 

Although various ways have been tried to cope with the uncertainty of geology and 

fluid properties, the model-based optimization still suffers from two drawbacks. First, the 

closed-loop optimization requires a well-built initial reservoir model to serve as the starting 

point of the optimization procedure. In reality, people will not always have sufficient prior 

knowledge to build such a model. Second, it is difficult to obtain a suitable production 

strategy at the beginning stage of the production because the early decision is made based 

on a rough initial model. 

When the acquisition of a sufficient data set is not financially feasible, data-driven 

methods which only require production data have became promising alternatives for the 

model-based optimization. Gupta (2014) applied data mining and time series analysis to 

forecast production in shale reservoirs of the Barnett, Bakken and Eagle Ford plays. A 

neural network model is built and trained on the history data of the previous year and 

subsequently used to predict future performance. The author found that the quality of 

prediction is highly dependent on the input data quality. Noisy and inconsistent input leads 

to unreliable predictions. Schuetter (2015) implemented both simple linear regression and 

advanced methods such as Random Forest, Support Vector Machine, Gradient Boosting 

and Multi-dimensional Kriging to analyze the performance of a reservoir from the 

Wolfcamp shale formation in the Permian Basin. Data including well location, well 

completion time, azimuth angle, etc. were considered to be the features of the training 
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model. Details about how to train and tune the statistical models were also discussed in 

their work. The statistical learning algorithms are finally used to identify factors that 

separate good wells from poor performers. 

The data-driven models mentioned above can run much more quickly than a 

physics-based reservoir simulation model because they are just mathematical proxies of 

real reservoirs. A major problem of the data-driven models is that human efforts are 

required to select, train and tune a suitable mathematical model for a particular reservoir. 

This process can be very tedious which involves the selection of features and the 

regularization. If an overcomplicated design is selected, a large amount of data is required 

to overcome the high variance. On the other hand, if the model is too simple to represent 

the true reservoir, it will suffer from large bias (Hastie, 2001). A second drawback of 

applying statistical methosd on reservoir performance prediction and optimization is that 

statistical methods are usually not as interpretable as physics-based models. This research, 

however, will propose a ‘data-driven’ method that is intuitive and fully interpretable which 

could serve as an alternative for model-based optimization. 

 

 

1.2 Concepts and Conventions 

 

Wellhead oil-gas ratio (OGR) is the primary indicator applied in the data-driven 

algorithm for decision-making. OGR is used here instead of more commonly used gas-oil 

ratio (GOR) because it is more intuitive and easier to explain in the context of the 

algorithm. Given a bottom hole pressure (BHP) schedule, the increase or decrease in OGR 

is referred to as OGR response. Such response provides significant information about 

reservoir fluid properties. The OGR response per unit time is defined as response rate. 
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In the context of this thesis, the naïve strategy refers to a schedule that keeps 

dropping the BHP at the maximum rate from the beginning of the production and then 

maintain producing at the lowest wellbore pressure allowed. For simplicity, the naïve 

approach is labeled ‘Strategy 1’. The well control plan generated by the optimization 

algorithm is referred to as ‘Strategy 2’ and the data-driven solution is ‘Strategy 3’. 

The metric applied to evaluate the performance of a well control plan is the five-

year NPV. A better solution is indicated by a larger five-year NPV. Within the scope of 

this thesis, the NPV is computed with 45$/bbl oil price, 2.2$/MMBtu gas price, and 12% 

cash depreciation rate. 

 

 

1.3 Layout of the Thesis 

 

There are five chapters and one appendix in this thesis. In Chapter 2, an 

investigation of the underlying physics behind the reservoir OGR response patterns is 

presented. It is shown that the relative permeability curve is the most important influence 

factor to the OGR response. Chapter 3 introduces the computational optimization 

algorithm, and related topics on the stochastic gradient, line search strategy, etc. are 

discussed. The optimal BHP schedules for test cases are also presented and compared with 

the naïve approach to explore the reservoir potential for optimization. By the end of this 

chapter, two important conclusions are made. First, holding BHP or slowing down the drop 

rate at the early production stage will yield a positive OGR response which would benefit 

the long-term NPV. Second, for reservoirs with S-shape fractional flow curves, the 

improvement could be obtained from optimization is limited. In Chapter 4, a data-driven 

algorithm is proposed based on the surface OGR response discussed in Chapter 2. The 
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method is proved to perform comparably to the computational optimization algorithm 

introduced in Chapter 3. Chapter 5 presents the conclusions and a brief discussion of the 

challenges and suggestions for practical application. Finally, the detailed parameter set-up 

of the reservoir simulation model is given in Appendix A. 
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CHAPTER 2 
 

CHAPTER 2: SIMULATION STUDY ON RESERVOIR RESPONSE 

 

 

 

An underground reservoir can be considered to be a black box. Given an input, the 

reservoir responds with an output. The input is a set of controls or constraints that operators 

exert on wells which penetrate the reservoir. For example, the producers or injectors can 

be operated under a specific rate or bottom hole pressure. The output is a series of 

quantitative values that change over time, such as oil production rate, bottom hole pressure, 

total oil production and water cut. In this work, the output is also referred to as reservoir 

response. The study of the reservoir response helps us better understand what is inside the 

‘black box’ and make a wiser decision based on the knowledge. 

The reservoir simulator is a powerful tool to evaluate and explore the potential of 

oil and gas reservoir. Modern reservoir engineering techniques like automatic history 

matching and production optimization highly rely on reservoir simulation studies. For this 

research, a reservoir simulation model is built to represent the true reservoir and its output 

is studied. The simulation tool will also be utilized to explore the underground state 

variables and their relationship with the surface response. The reservoir simulation model 

in this chapter is built and implemented through the Schlumberger Eclipse E100 

commercial simulator. In Section 2.3, a simulator based on the Automatically 

Differentiable Expression Templates Library (ADETL) framework (Younis 2011) will be 

used together with E100 to validate an underground saturation build up phenomenon. 
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2.1 Reservoir Model 

 

This section will introduce the simulation set-up for the study including gridding, 

PVT model, and relative permeability model. The relative permeability plays a significant 

role in this research. Several types of relative permeability curves are generated to cover 

the complexity and uncertainty of real reservoirs. 

 

 

2.1.1 Gridding and Formation Properties 

 

A reservoir simulation model with a multi-stage fractured well is built. A real 

fractured well has 20 fracturing stages and 4 fractures for each stage. So ultimately, 80 

fractures intersect with the horizontal wellbore. The reservoir model established represents 

one-fourth of the real fractured well with 40 half fractures intersecting with the horizontal 

wellbore. Log local grid refinement is applied to the grids around the fractures and wellbore 

to make more accurate predictions. 

 
Figure 2.1 Reservoir Model 

 

Refer to the table 6.1 in Appendix A for more reservoir properties. 

 

 

2.1.2 PVT Data 

 

The oil and gas PVT data is shown in the figures and tables below; the bubble point 

is set to be 5000 psi. 
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Figure 2.2 Oil PVT 

 

 

Figure 2.3 Gas PVT 

 

 

 

2.1.3 Relative Permeability Model 

 

Four sets of relative permeability curves are generated by implementing Corey’s 

model and used to test the algorithm. Corey’s model is characterized by the equations 

below: 
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𝑘𝑟𝑜 = 𝐾𝑟𝑜,𝑚𝑎𝑥 (

𝑆𝑜−𝑆𝑜𝑟

1−𝑆𝑜𝑟−𝑆𝑔𝑐
)

𝑛𝑜

, 

𝑘𝑟𝑔 = 𝐾𝑟𝑔,𝑚𝑎𝑥(
𝑆𝑔−𝑆𝑔𝑐

1−𝑆𝑜𝑟−𝑆𝑔𝑐
)𝑛𝑔, 

2.1 

where 𝑆𝑜𝑟 and 𝑆𝑔𝑐 denote residual oil saturation and critical gas saturation; 𝐾𝑟𝑜,𝑚𝑎𝑥  and 

𝐾𝑟𝑔,𝑚𝑎𝑥 represent maximum oil relative permeability and gas relative permeability; 𝑛𝑜 and 

𝑛𝑔 are exponents which range from 1 to 6. The exponents determine the curvature of the 

permeability functions of each phase. Larger exponents mean more concave permeability 

curves and is more sensitive to 𝑆𝑜 when 𝑆𝑜 is close to 1. 

The oil flow fraction function, which is of more importance to the study, can be 

derived once the relative permeability and viscosity of oil and gas phases are known. The 

relation is given by, 

 𝑓𝑜 =
1

1+
𝑘𝑟𝑔𝑘𝑟𝑜

𝜇𝑜𝜇𝑔

. 2.2 

The equation neglects gravity and capillary pressure. While 𝑘𝑟𝑔 and 𝑘𝑟𝑜 are treated 

as functions of saturation, 𝑆𝑜 , 𝜇𝑜  and 𝜇𝑔  are functions of and pressure, 𝑃 . The study 

assumes 𝜇𝑜 = 0.45 𝑐𝑝  and 𝜇𝑔 = 0.0268 𝑐𝑝  to make the factional flow curves below 

(Figure 2.4), but in reality, viscosity will actually change with the pressure and the 

simulation process will capture this dynamic change. The constant viscosity setting here is 

for visualization. 

In this study, 𝑆𝑜𝑟 and 𝑆𝑔𝑐 are set to be 0.2 and 0, oil exponential term 𝑛𝑜 will take 

a value of 2 and gas exponential term 𝑛𝑔 is set to be 0.5, 1, 2 and 4 to make fractional flow 

curves with various shapes. 
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(a) ng = 0.5 

  
(b) ng = 1 

 
(c) ng = 2 

 
(d) ng = 4 

Figure 2.4 Relative Permeability Curves and Fractional Flow Curves 
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2.2 Reservoir Surface Response 

 

The reservoir model described in Section 2.1 can be considered to be a black box. 

A proper input is given, and output is obtained. Here, the input is the BHP control schedule, 

and the output can be any response that is generated throughout the reservoir simulation 

life, for example, the cumulative oil production or reservoir pressure. In this study, 

wellhead oil-gas ratio (OGR) is considered as an output. With the help of simulation tools, 

the study investiages how the OGR responds to the various BHP schedules. The response 

patterns are discussed in detail along with two major insights the OGR provides. Afterward, 

the underground saturation and pressure, which are considered as outputs, will also be 

investigated. 

 

 

2.2.1 Reservoir Response When Dropping Pressure 

 

In this section, tests are made to explore how the reservoir responds when BHP 

drops from above to below the bubble point pressure, Pb. Starting from the initial reservoir 

pressure (6000 psi), the well bottom hole pressure is reduced to 1000 psi within 62.5 days 

(with 80 psi/day). Note that the BHP will drop to Pb = 5000 psi within 12.5 days. Figure 

2.5 shows the surface OGR response of 4 cases with different relative permeability curves 

(Section 2.1.3).  
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Figure 2.5 Reservoir Surface Response When Pressure Drops 

 

Results show that different relative permeability inputs lead to distinct responses. 

Above the bubble point pressure, the OGR remains constant for all cases. Below the Pb, 

the OGR drops directly for the ng = 0.5 and ng = 1 cases, while for S-shape fractional flow 

curve cases (ng = 2 and ng = 4) the OGR tends to build up before decreasing. 

The observation above proves that pressure drop test below bubble point pressure 

is an effective way to distinguish differences among all relative permeability curves. 

Further analysis on the surface OGR responses will be shown in later sections.  

 

 

2.2.2 Reservoir Response When Holding Pressure 

 

A study is made by holding the wellbore pressure constant after a steep drop. The 

BHP is controlled to decrease from 6000 psi to 4600 psi within 17.5 days and then 

maintained at 4600 psi. Figure 2.6 displays the BHP change versus time and the surface 

OGR responses. 
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Figure 2.6 Reservoir Surface Response When Pressure Drops and Holds 

 

Different types of relative permeability yield four different OGR responses. The 

OGR goes up then down (as shown in Figure 2.6) and remains constant once the pressure 

is held for the ng = 2 and ng = 4 cases. However, for ng = 0.5 and ng = 1 cases, the OGR 

goes down and has a tendency to rebound when pressure is maintained. The observations 

about the surface OGR responses are of great importance for the design of a data-driven 

well-control algorithm. The next section will discuss the inner mechanism of the reservoir 

response in detail. 

 

 

2.3 Underground Response 

 

The reservoir surface response provides significant information for well-control 

decision-making. This section discusses why the reservoir responds the way as presented 

in Section 2.2 by exploring the connection between the surface OGR response and 

underground saturation variation. It was found that the OGR is positively related to the 

saturation. A detailed qualitative analysis was made to clarify this connection. Additionally, 

a simple one-dimension model was built to investigate the underground saturation build-
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up phenomenon. This phenomenon was observed and confirmed by multiple simulation 

trials with both the Eclipse E100 and the ADETL simulator. Morever, a one-cell analysis 

was carried out trying to explain the fluid mechanism behind the phenomenon. 

 

 

2.3.1 Connection Between OGR and Underground Variables 

 

The surface response should be a function of the underground response. It is 

essential to study and understand the connection between the surface and underground 

response. This work specifically focuses on the study of the relationship between the 

surface production OGR and the underground state variables (pressure and oil saturation). 

This relation is represented by the equation below, 

 𝑂𝐺𝑅 =
𝑉𝑜,𝑠𝑡𝑑

𝑉𝑔,𝑠𝑡𝑑
=

(𝑞𝑜,𝑟/𝐵𝑜)∙𝑡

(𝑞𝑜,𝑟𝑅𝑠/𝐵𝑜+𝑞𝑔,𝑟/𝐵𝑔)∙𝑡
, 2.3 

 𝑂𝐺𝑅 =
1

178𝑅𝑠+
𝐵𝑜

5.615𝐵𝑔

1−𝑓𝑜
𝑓𝑜

. 2.4 

In the equation, 178 comes from the unit conversion of 𝑅𝑠 from mcf/stb to rb/stb 

and 5.615 comes from the conversion of 𝐵𝑔 from rb/scf to rb/stb. Note that the viscosity 

(𝜇), solution oil gas ratio (𝑅𝑠), oil formation volume factor (𝐵𝑜), and gas formation volume 

factor (𝐵𝑔) are all functions of pressure while the oil flow fraction (𝑓𝑜) is a function of 

saturation. Accordingly, the OGR can be written as a function of oil pressure (𝑃) and 

saturation (𝑆𝑜) at the wellbore (or at the fracture). 

 𝑂𝐺𝑅 = 𝐹(𝑃, 𝑆𝑜). 2.5 

How the OGR relates to 𝑃 depends on the PVT properties and how it relates to 𝑆𝑜 

is partially determined by PVT (see 2.2) and partially depends on relative permeabilities. 
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Ignoring the minor effect of viscosity (𝜇), OGR versus 𝑆𝑜 relation should solely depend on 

relative permeabilities. 

To understand how surface responses change with time, we can take the derivative 

to time for 2.4, 

 
𝜕𝑂𝐺𝑅

𝜕𝑡
= (

𝜕𝑂𝐺𝑅

𝜕𝑅𝑠

𝜕𝑅𝑠

𝜕𝑃
+

𝜕𝑂𝐺𝑅

𝜕(
𝐵𝑜
𝐵𝑔

)

𝜕(
𝐵𝑜
𝐵𝑔

)

𝜕𝑃
)

𝜕𝑃

𝜕𝑡
+

𝜕𝑂𝐺𝑅

𝜕𝑓𝑜

𝜕𝑓𝑜

𝜕𝑆𝑜

𝜕𝑆𝑜

𝜕𝑡
, 2.6 

and then simplify the equation above,  

 𝜕𝑂𝐺𝑅

𝜕𝑡
= 𝐶𝑝

𝜕𝑃

𝜕𝑡
+ 𝐶𝑠

𝜕𝑆𝑜

𝜕𝑡
, 2.7 

where, 

 
𝐶𝑝 =

𝜕𝑂𝐺𝑅

𝜕𝑅𝑠

𝜕𝑅𝑠

𝜕𝑃
+

𝜕𝑂𝐺𝑅

𝜕(
𝐵𝑜
𝐵𝑔

)

𝜕(
𝐵𝑜
𝐵𝑔

)

𝜕𝑃
, 2.8 

 𝐶𝑠 =
𝜕𝑂𝐺𝑅

𝜕𝑓𝑜

𝜕𝑓𝑜

𝜕𝑆𝑜
. 2.9 

𝐶𝑝 denotes the pressure contribution rate. It represents the influence on the OGR 

per unit pressure change. Similarly, 𝐶𝑠 is the contribution to the OGR per unit saturation 

change. The two contribution rates along with the absolute change of pressure and 

saturation determine how the surface OGR responds. 

To further simplify the analysis, we can take the derivative on 𝑅𝑠, 𝐵𝑜/𝐵𝑔 and 𝑓𝑜 for 

2.4. Because the 𝑅𝑠, 
𝐵𝑜

𝐵𝑔
, and 𝑓𝑜 are always greater than 0, the following equations can be 

derived, 

 𝜕𝑂𝐺𝑅

𝜕𝑅𝑠
= − (178𝑅𝑠 +

𝐵𝑜(1−𝑓𝑜)

5.615𝐵𝑔𝑓𝑜
)

−2

178 < 0, 2.10 

 𝜕𝑂𝐺𝑅

𝜕(𝐵𝑜/𝐵𝑔)
= − (178𝑅𝑠 +

𝐵𝑜(1−𝑓𝑜)

5.615𝐵𝑔𝑓𝑜
)

−2
1−𝑓𝑜

5.615𝑓𝑜
< 0, 

2.11 
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 𝜕𝑂𝐺𝑅

𝜕𝑓𝑜
= (178𝑅𝑠 +

𝐵𝑜(1−𝑓𝑜)

5.615𝐵𝑔𝑓𝑜
)−2 𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2 > 0. 2.12 

It is now known that the OGR is negatively correlated to 𝑅𝑠 and 
𝐵𝑜

𝐵𝑔
, and positively 

correlated to 𝑓𝑜. Relative magnitudes of the derivatives are determined by 178, 
1

5.615𝑓𝑜
 and 

𝐵𝑜

5.615𝐵𝑔𝑓𝑜
2. Furthermore, when it is below the bubble point 𝑅𝑠 and 

𝐵𝑜

𝐵𝑔
 are both monotonic 

increasing w.r.t pressure P (Figure 2.2 and Figure 2.7). 𝑓𝑜  considered here is also a 

monotonic increasing function of 𝑆𝑜 as was discussed in Section 2.1.3. That is to say, 

 𝑑𝑅𝑠

𝑑𝑃
> 0, for 𝑃 < 𝑃𝑏, 2.13 

 𝑑(𝐵𝑜/𝐵𝑔) 

𝑑𝑃
> 0, for 𝑃 < 𝑃𝑏, 2.14 

 𝑑𝑓𝑜

𝑑𝑆𝑜
> 0, for all 𝑆𝑜 ∈ [0,1]. 2.15 

From 2.8-2.15, it is obvious that 𝐶𝑝 <0 and 𝐶𝑠 > 0 . This implies the negative 

correlation between the OGR and pressure and the positive correlation between the OGR 

and saturation. 

For now, 𝑆𝑜  is treated as an independent variable and the contributions to the 

surface response from 𝑆𝑜  and 𝑃  are considered separately. However, under certain 

circumstance, 𝑆𝑜  can be assumed as a dependent on pressure P. They are nonlinearly 

correlated and 
𝜕𝑆𝑜

𝜕𝑃
 tends to be greater than 0 when the pressure change rate is large.   
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Figure 2.7 𝐵𝑜/𝐵𝑔 vs P Plot 

 

The following analysis explains the OGR versus pressure or OGR versus 

saturation correlations for each well-control stage more concretely. 

Firstly, when the BHP is above the bubble point pressure (𝑃𝑏), no gas comes out 

from the oil liquid. 𝑆𝑜  remains to be 1 and 𝑅𝑠 , 𝐵𝑜 , 𝐵𝑔 , 𝜇  are almost constant over the 

pressure (Figure 2.2 and Figure 2.3). Thus, the OGR remains constant. 

Secondly, when pressure drops under the bubble point pressure (𝑃𝑏), 
𝜕𝑃

𝜕𝑡
< 0. The 

change of the OGR is governed by two factors: the decline in pressure which positively 

contributes to the OGR and the decrease in saturation which has a negative influence. The 

surface OGR response depends on the interaction of both factors. At this pressure control 

stage, the assumption that 𝑆𝑜 is a dependent of 𝑃 is reasonable although strictly 𝑆𝑜 should 

be a function of both wellbore pressure 𝑃 and time t. However, when the decline rate of 

BHP is large, t has little influence on saturation and the OGR can be treated as a function 

of 𝑃. Application of the 𝑆𝑜- 𝑃 dependency assumption to 2.7 gives, 

 𝜕𝑂𝐺𝑅

𝜕𝑡
= 𝐶𝑝

𝜕𝑃

𝜕𝑡
+ 𝐶𝑠

𝜕𝑆𝑜

𝜕𝑃

𝜕𝑃

𝜕𝑡
, 2.16 
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where 𝐶𝑝 =
𝜕𝑂𝐺𝑅

𝜕𝑅𝑠

𝑑𝑅𝑠

𝑑𝑃
+

𝜕𝑂𝐺𝑅

𝜕(𝐵𝑜/𝐵𝑔) 

𝑑(𝐵𝑜/𝐵𝑔) 

𝑑𝑃
, 𝐶𝑠 =

𝜕𝑂𝐺𝑅

𝜕𝑓𝑜

𝜕𝑓𝑜

𝜕 𝑆𝑜
. According to Figure 2.2 

and Figure 2.7, 
𝑑𝑅𝑠

𝑑𝑃
 and 

𝑑(𝐵𝑜/𝐵𝑔) 

𝑑𝑃
 are almost constant when the pressure is below bubble 

point. For convenience, 
𝑑𝑅𝑠

𝑑𝑃
 will be denoted by 𝑐1  and 

𝑑(𝐵𝑜/𝐵𝑔) 

𝑑𝑃
 will be denoted by 𝑐2 . 

Substituting 2.10-2.12 into the formula of 𝐶𝑝 and 𝐶𝑠 yields, 

 
𝐶𝑝 = −178𝑐1 (178𝑅𝑠 +

𝐵𝑜(1−𝑓𝑜)

5.615𝐵𝑔𝑓𝑜
)

−2

−
𝑐2(1−𝑓𝑜)

𝑓𝑜
(178𝑅𝑠 +

𝐵𝑜(1−𝑓𝑜)

5.615𝐵𝑔𝑓𝑜
)

−2

, 

2.17 

 𝐶𝑠 =
𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2 (178𝑅𝑠 +

𝐵𝑜(1−𝑓𝑜)

5.615𝐵𝑔𝑓𝑜
)−2 𝜕𝑓𝑜

𝜕 𝑆𝑜
. 2.18 

Substituting the above equations into 2.16, we obtain 

 𝜕𝑂𝐺𝑅

𝜕𝑡
=

𝜕𝑃

𝜕𝑡
(178𝑅𝑠 +

𝐵𝑜(1−𝑓𝑜)

5.615𝐵𝑔𝑓𝑜
)

−2

(
𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2

𝜕𝑓𝑜

𝜕 𝑆𝑜

𝜕𝑆𝑜

𝜕𝑃
− 178𝑐1 −

𝑐2(1−𝑓𝑜)

𝑓𝑜
). 

2.19 

Replace the always-positive term (178𝑅𝑠 +
𝐵𝑜

5.615𝐵𝑔𝑓𝑜
)

−2

 by symbol D, we obtain 

 𝜕𝑂𝐺𝑅

𝜕𝑡
= 𝐷

𝜕𝑃

𝜕𝑡
(

𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2

𝜕𝑓𝑜

𝜕 𝑆𝑜

𝜕𝑆𝑜

𝜕𝑃
− 178𝑐1 −

𝑐2(1−𝑓𝑜)

𝑓𝑜
). 2.20 

𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2

𝜕𝑓𝑜

𝜕 𝑆𝑜

𝜕𝑆𝑜

𝜕𝑃
 is regarded as the contribution of saturation while −(178𝑐1 +

𝑐2(1−𝑓𝑜)

𝑓𝑜
) is the influence of pressure. 

𝜕𝑃

𝜕𝑡
 is negative and the sign of the above equation is 

determined by the difference of 
𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2

𝜕𝑓𝑜

𝜕 𝑆𝑜

𝜕𝑆𝑜

𝜕𝑃
 and 178𝑐1 +

𝑐2(1−𝑓𝑜)

𝑓𝑜
; The OGR 

increases if 178𝑐1 +
𝑐2(1−𝑓𝑜)

𝑓𝑜
>

𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2

𝜕𝑓𝑜

𝜕 𝑆𝑜

𝜕𝑆𝑜

𝜕𝑃
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From the slope of oil PVT curve (Figure 2.2 Oil PVT), 𝑐1 is around 3 × 10−4 and 

𝑐2  is around 1.5 × 10−4 . 
𝜕𝑓𝑜

𝜕 𝑆𝑜

𝜕𝑆𝑜

𝜕𝑃
 is important to determine the sign of 

𝜕𝑂𝐺𝑅

𝜕𝑡
 if 𝑓𝑜  is not 

extremely close to zero. The study of Section 2.3 will focus on the two derivatives.  

𝜕𝑓𝑜

𝜕 𝑆𝑜
 is the slope of the oil-gas fractional flow curve which is pre-determined by the 

properties of the reservoir fluid. Generally, when the slope is large, the OGR tends to 

decrease with time and vice versa. In another way, if 𝑓𝑜  is a weak function of 𝑆𝑜  the 

positive influence triggered by the decrease in pressure will be overwhelming compared 

with the negative contribution by the reduction in saturation and the 
𝜕𝑂𝐺𝑅

𝜕𝑡
 will be larger 

than 0. On the opposite, saturation contribution will dominate when 𝑓𝑜 is very sensitive to 

𝑆𝑜. 

Finally, when wellbore pressure is kept, 𝑅𝑠 , 𝐵𝑜  and 𝐵𝑔  can all be treated as 

constants and, the OGR is determined solely by 𝑆𝑜. Now, 𝑆𝑜 is a function of time only. 

With the monotonic fractional flow curve, the OGR positively correlates to 𝑆𝑜. Therefore, 

for pressure holding period, it is reasonable to simply study the change of underground oil 

saturation, 

 𝑂𝐺𝑅 = 𝐹(𝑆𝑜(𝑡)), 2.21 

 𝜕𝑂𝐺𝑅

𝜕𝑡
=

𝜕𝑂𝐺𝑅

𝜕𝑆𝑜

𝜕𝑆𝑜

𝜕t
=

𝜕𝑂𝐺𝑅

𝜕𝑓𝑜

𝜕𝑓𝑜

𝜕𝑆𝑜

𝜕𝑆𝑜

𝜕t
. 2.22 

Substituting 2.12 into 2.22, yields, 

 𝜕𝑂𝐺𝑅

𝜕𝑡
= (178𝑅𝑠 +

𝐵𝑜(1−𝑓𝑜)

5.615𝐵𝑔𝑓𝑜
)−2 𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2

𝜕𝑓𝑜

𝜕𝑆𝑜

𝜕𝑆𝑜

𝜕t
. 2.23 

Since 
𝜕𝑂𝐺𝑅

𝜕𝑓𝑜
> 0 (2.12) and 𝑓𝑜 is a monotonic increasing function of 𝑡, the sign of 

𝜕𝑂𝐺𝑅

𝜕𝑡
 is determined by the derivative of saturation with respect to time. The magnitude of 
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𝜕𝑂𝐺𝑅

𝜕𝑡
 depends on the absolute value of 𝑓𝑜, the steepness of fractional flow curve (

𝜕𝑓𝑜

𝜕𝑆𝑜
), and 

the saturation change with time (
𝜕𝑆𝑜

𝜕𝑡
). In Section 2.3.2, the study will focus on 

𝜕𝑓𝑜

𝜕𝑆𝑜
 and 

𝜕𝑆𝑜

𝜕𝑡
. 

In summary, above the bubble point, the OGR barely changes. When the pressure 

drops below the bubble point pressure, the OGR fluctuation is the result of a combination 

of pressure and saturation contributions. Specifically, the OGR is affected by 𝑓𝑜 , the 

derivative of the 𝑆𝑜-𝑓𝑜 function and the nonlinear relation between 𝑃 and 𝑆𝑜 (2.20). When 

the pressure holds below the bubble point, 𝑆𝑜 -𝑓𝑜 function is the dominant factor that 

governs the intensity of OGR response. It is also necessary to study the saturation-vs-time 

relation at this stage (2.23). 

 

Figure 2.8 The Relation Between OGR and Underground State Variables for Each Well 

Control Stage 

 

 

 

2.3.2 Underground Saturation change 

 

A pressure drop-and-hold test was made to test the reservoir subsurface response 

(oil saturation change). According to the simulation results, oil saturation decreases 

simultaneously with the pressure as the BHP drops below bubble point. This observation 
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validates the previous assumption (2.16) that saturation 𝑆𝑜 is positively correlated with 

wellbore pressure P (
𝜕𝑆𝑜

𝜕𝑃
> 0 ) when the pressure drops fast. Additionally, when the 

pressure suddenly holds, the saturation of the underground fracture and blocks around the 

fracture will increase. 

To illustrate the reservoir reaction, a one-dimension simplified model was built 

which has only one fracture. The space between each fraction is 50 ft. The 1D model 

represents the right half of the fracture space which should be 25 ft wide (Figure 2.9). There 

are 250 grid blocks in this model, and the dimension of each grid block is 0.1ft×50ft×200ft. 

The drop-and-hold test applied four relative permeability curves which were described in 

Section 2.1.3. Other reservoir properties are the same as the original model. The leftmost 

block represents the fracture and characterizes the effect of well sink with the Peaceman 

Method. The following figure illustrates how this one-dimension model is built. 

 

Figure 2.9 Sketch of Simplified 1D Model 

 

A simulation was run that the BHP drops from 6000 psi to 4000 psi in 25 days and 

then suddenly holds. The oil saturation of fracture block (the leftmost cell) versus time is 
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presented in Figure 2.10. Notice that as the pressure drops below bubble point pressure 

(5000 psi), the 𝑆𝑜 begins to go down. Once we start to keep the pressure constant, 𝑆𝑜 builds 

up. 

Let’s focus on the pressure dropping period first. Below the  

𝑃𝑏 , while 𝑆𝑜  falls concurrently with P for all cases, 
𝜕𝑆𝑜

𝜕𝑃
 is larger for cases with steeper 

fractional flow curves (ng=0.5 and ng=1). Steeper curve implies that gas gains more 

mobility with the same amount of pressure decreases. As gas is easier to escape to the 

wellhead, it takes up pore volume less efficiently, and saturation drops relatively slow. 

  

  

Figure 2.10 BHP and Saturation Response for Different Cases 

 

Denote 
𝜕𝑃

𝜕𝑡
 by a negative constant value –c and subsititute it into 2.19, we obtain, 
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 𝜕𝑂𝐺𝑅

𝜕𝑡
= 𝑐𝐷(178𝑐1 +

𝑐2(1−𝑓𝑜)

𝑓𝑜
−

𝐵𝑜

5.615𝐵𝑔

1

𝑓𝑜
2

𝜕𝑓𝑜

𝜕 𝑆𝑜

𝜕𝑆𝑜

𝜕𝑃
). 2.24 

From the above equation, 
𝜕𝑆𝑜

𝜕𝑃
 contributes negatively to the OGR. However, the 

influence of 
𝜕𝑆𝑜

𝜕𝑃
 is limited compared with the contribution of as 

𝜕𝑓𝑜

𝜕𝑆𝑜
. Over different cases, 

𝜕𝑆𝑜

𝜕𝑃
 is positive and differs twice at most, while 

𝜕𝑓𝑜

𝜕𝑆𝑜
 ranging from approximately 0 (ng=4 

case) to 50 (ng=0.5 case) makes much bigger differences. The cases with S-shape fractional 

curves (ng = 2 and ng = 4 cases) have larger 
𝜕𝑆𝑜

𝜕𝑃
 and smaller 

𝜕𝑓𝑜

𝜕𝑆𝑜
 while the cases with steep 

monotonic fractional flow curves (ng = 0.5 and ng = 1 cases) are the opposite. Now, it is 

easy to understand the surface OGR response pattern in Figure 2.5, 
𝜕𝑂𝐺𝑅

𝜕𝑡
 is greater than 

zero when BHP drops just below the bubble point for ng = 4 and ng = 2 case since 
𝜕𝑓𝑜

𝜕 𝑆𝑜
 is 

almost 0 when 𝑆𝑜 is close to 1 (Figure 2.4). The pressure contribution overwhelms the 

saturation contribution leading to a positive OGR response. On the contrary, for the ng = 

0.5 and ng = 1 case, the negative contribution from saturation is dominant and the OGR 

response is negative because 
𝜕𝑓𝑜

𝜕 𝑆𝑜
 is relatively large. 

Based on the simulation results, when the pressure is held, the oil saturation of the 

perforated block and bottom hole oil flow fraction will build up, therefore returning the 

positive OGR response. However, how the reservoir will respond is determined by the 

relative permeability of oil and gas. Specifically, the response rate is positively correlated 

to the slope of fraction flow curve (see 2.23). For example, given the following relative 

permeability curve (ng = 0.5) and fractional flow curve, we can divide the curve into a 

strong response saturation part and a weak response part. 
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Figure 2.11 Response Zone for ng=0.5 case 

 

Bottom-hole saturation holds back slightly as the BHP holds. If the saturation is 

greater than 0.9, the slight increase in 𝑆𝑜 yields a significant increase in 𝑓𝑜 and turns out a 

strong OGR response, while if the 𝑆𝑜 is within the weak response region, a negligible OGR 

increase is expected. 

 

Figure 2.12 BHP and Saturation Response Under Drop-Hold=Drop Test For Case ng=1 

 

To further explore the saturation build-up phenomenon, another test was made on 

the ng = 1 case, that the bottom hole pressure was set to drop and keep alternatively. This 

drop-hold-drop schedule displays a clearer pattern that oil saturation will build up every 

time the BHP starts to be held constant after a dramatic drop. 
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Figure 2.13 Oil Saturation Profile When Pressure Holds for ng = 1 case – The Simulation 

Result Given by Eclipse E100 (Note that the BHP starts to be kept at 25th day) 

 

However, from the oil saturation profile (Figure 2.13) it is evident that the 

saturation build-up only happens within a small proximity to the fracture. Oil saturation of 

cells far away from the fracture will decrease. In another word, the gas will move backward 

into the reservoir. 

 

Figure 2.14 Comparison of Eclipse E100 1D Model and ADETL 1D Model 

 

Besides the Eclipse 1D model illustrated above, another pressure boundary model 

is built as a validation. As shown in Figure 2.14, the model has 249 grid blocks plus a 

‘ghost block’ on the leftmost. The ‘ghost block’ is the fracture and the model treats the 

fracture pressure as the bottom hole pressure. In this case, the BHP is set to drop first and 

then held constant. As the pressure of the fracture was controlled, the flux flows through 
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the face of the ‘ghost block’ and the first real block can be determined. Note that this 

pressure boundary model is closer to a real situation in that the fracture is assumed to be 

an infinite conductivity flow channel with zero pressure gradient while the fracture in the 

Peaceman Well Model is a real grid block with a pressure gradient. 

 

Figure 2.15 Oil Saturation Profile When Pressure Holds for ng = 1 case – The Simulation 

Result Given by ADETL Simulator (Note that pressure starts to be kept at 25th day) 

 

The saturation profile shows the same trend as it is in the Eclipse simulation 

result. There is no saturation gap between the first and second grid block as it was in 

Figure 2.13. This is because the fracture cell does not exist in the simulation model. The 

leftmost cell represents the first non-fracture block.  

The saturation build up seem to be counterintuitive, but the material balance of a 

single cell can explain the dynamic. 

 

Figure 2.16 Sketch of One-cell Model 
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Consider the material balance equation of one cell, 

 ∅2𝑉𝑆𝑜2

𝐵𝑜2
−

∅1𝑉𝑆𝑜1

𝐵𝑜1
= ∆𝑡[𝑞𝑜 𝑠𝑡𝑑

𝑖𝑛 − 𝑞𝑜 𝑠𝑡𝑑
𝑜𝑢𝑡 ]. 2.25 

Note that the 𝑞𝑜
𝑖𝑛  and 𝑞𝑜

𝑜𝑢𝑡  in this equation are surface flow rate. If we assume 

minor effect of rock and fluid compressibility (∅, 𝐵𝑜), the equation would be, 

 𝑆𝑜2 − 𝑆𝑜1 =
1

∅𝑉
∆𝑡[𝑞𝑜 𝑟

𝑖𝑛 − 𝑞𝑜  𝑟
𝑜𝑢𝑡]. 2.26 

After simplification, we obtain, 

 𝑑𝑆

𝑑𝑡
=

1

∅𝑉
[𝑓𝑜

𝑖𝑛𝑞𝑡 𝑟
𝑖𝑛 − 𝑓𝑜

𝑜𝑢𝑡𝑞𝑡 𝑟
𝑜𝑢𝑡], 2.27 

where, 𝑓𝑜
𝑖𝑛 , 𝑓𝑜

𝑜𝑢𝑡  are determined by So, 𝑞𝑡 𝑟
𝑖𝑛 , 𝑞𝑡 𝑟

𝑜𝑢𝑡  are determined by Pressure 

gradient. 

From 2.27, it is evident that if 𝑓𝑜
𝑖𝑛𝑞𝑡 𝑟

𝑖𝑛 > 𝑓𝑜
𝑜𝑢𝑡𝑞𝑡 𝑟

𝑜𝑢𝑡 the oil saturation of the single 

cell will build up, otherwise, it will fall. On one hand, in the figure of 𝑃𝑜, 𝑆𝑜 profile and the 

figure of 𝑓𝑜 and pressure gradient (𝑑𝑃𝑜) at day 30 (Figure 2.17), the pressure gradient is 

almost constant for the grids close to fracture. The 𝑓𝑜, however, increase monotonically 

with the distance. This indicates that if we consider any small block within this scope, we 

will have 𝑓𝑜
𝑖𝑛𝑞𝑡 𝑟

𝑖𝑛 > 𝑓𝑜
𝑜𝑢𝑡𝑞𝑡 𝑟

𝑜𝑢𝑡  and consequently 𝑆𝑜  will increase with time according to 

2.27. Note that the scope of the constant 𝑑𝑃𝑜  consists with the pressure build up area 

observed from Figure 2.13 and Figure 2.15. 
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                                         (a)                                                            (b)  

Figure 2.17 Oil Saturation and Pressure Profile along with Oil Flow Fraction and 

Pressure Gradient Profile at Day 30 (When the Pressure Holds) 

 

On the other hand, for day 22 which is before the pressure hold, 𝑑𝑃𝑜 is no longer 

constant and 𝑓𝑜
𝑖𝑛𝑞𝑡 𝑟

𝑖𝑛 > 𝑓𝑜
𝑜𝑢𝑡𝑞𝑡 𝑟

𝑜𝑢𝑡  is not guaranteed any more and 𝑆𝑜 in the fracture grid 

keeps dropping on day 22 (Figure 2.18). 

 

                                         (a)                                                            (b)  

Figure 2.18 Oil Saturation and Pressure Profile along with Oil Flow Fraction and 

Pressure Gradient Profile at Day 22 (When the Pressure Drops) 

 

In conclusion, when BHP declines below bubble point pressure, saturation 

decreases simultaneously. The variation of pressure contribution is negligible compared to 

the saturation’s positive influence. 
𝜕𝑓𝑜

𝜕𝑆𝑜
 ,however, is a major factor that determines the 

saturation contribution and consequently decides the sign of 
𝜕𝑂𝐺𝑅

𝜕𝑡
. When BHP is then kept 
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constant, saturation builds up within a small proximity to the fracture. The influence power 

of this saturation surge on the OGR highly depends on the value of 
𝜕𝑓𝑜

𝜕𝑆𝑜
. 

In a word,  
𝜕𝑓𝑜

𝜕𝑆𝑜
 is the most important factor that determines the sign and intensity of 

the OGR. In turn, the information of OGR response which reflects the relative magnitude 

of 
𝜕𝑓𝑜

𝜕𝑆𝑜
 can be utilized to infer reservoir fluid properties. 
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CHAPTER 3 
 

CHAPTER 3: OPTIMIZATION ALGORITHM AND COMPARISON 

 

 

 

Production optimization offers a powerful way to assist the design of well control 

or well placement strategies. If a true reservoir description is available, computer 

optimization program will lead to the global optimal or at least a local optimal solution. 

The study takes advantage of the optimization results in two ways. First, optimization 

solution is compared with a simple reference strategy (Strategy 1) to explore the reservoir 

potential for improvement. Second, optimization solution (Strategy 2) serves as a reference 

strategy to test the performance of the data-driven method which will be introduced later. 

 

 

3.1 Solution by the Optimization Method 

 

 

 

3.1.1 Optimization Algorithm Description 

 

In order to validate the proposed algorithm, a numerical production optimization 

algorithm was implemented to obtain the optimal solution and to treat it as a reference well 

control strategy. Five-year NPV is set to be the objective to maximize, and it is treated to 

be a multi-variable function. The well BHPs at each time step are the independent 

variables. The numerical simulator serves as the evaluator of the NPV and the formula is 

shown below. 

 max
𝑢

𝑓(𝑢) = 𝑁𝑃𝑉, 3.1 
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 𝑁𝑃𝑉 =  ∑
𝑟𝑜

𝑛𝑄𝑜
𝑛+𝑟𝑔

𝑛𝑄𝑔
𝑛

(1+𝑏)𝑡𝑛/365

𝑁𝑡
𝑛=1 , 

 
3.2 

where 𝑟𝑜
𝑛 and 𝑟𝑔

𝑛 denote oil and gas price respectively; 𝑁𝑡 is the number of time 

steps; 𝑄𝑜
𝑛 and 𝑄𝑔

𝑛 represent the total oil and gas production of nth time step. 

Essentially, the optimization procedure is to search for a combination of BHP 

controls that yields an “optimum” NPV. This searching process relies on the steepest 

descent algorithm with backtracking scheme. Other methods, such as conjugate gradient 

and quasi-Newton BFGS might be a more efficient way to capture an optimal solution if 

the exact gradient of the objective function is available. Nevertheless, to attain this 

gradient, the ‘adjoint’ matrix needs to be computed which requires the access to the 

simulator code, and this is not possible to obtain with a commercial reservoir simulator. 

Instead, the true gradient can be approximated by a stochastic gradient which only requires 

multiple evaluations of the NPV.  

The following equation presents the basic formula of the steepest descent method.  

 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘

𝑑𝑘

‖𝑑𝑘‖∞
, 

3.3 

where 𝑑𝑘 is the search direction, and in this case it is the approximated gradient of the NPV 

𝑑𝑘 = 𝛻𝑓; 𝑥 is the variable space to be searched; 𝑥𝑘is the variable vector for kth search step; 

𝛼𝑘 is the line search step size for kth step. 

In this problem, the naïve backtracking is applied. The step size 𝛼𝑘 is chosen by a 

heuristic scheme. As a search direction is determined, the line search method starts from 

an initial 𝛼𝑘
0 and tries to update the variable vector by this 𝛼. If this vector does not return 

a better NPV, the algorithm cuts the step by half and repeat the same process. Otherwise, 

the algorithm accepts the step size 𝛼 and corresponding NPV. If no NPV is accepted within 
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five cuts, the algorithm regenerates the search direction 𝑑𝑘.by resampling ensembles. The 

specific workflow is shown below, 

Optimization Algorithm 

 Set maximum step cut time 𝑁𝑠𝑐 = 5; set maximum resample time 𝑁𝑠 =5; set 

initial step size 𝛼0 = 0.1; set maximum step size 𝛼𝑚𝑎𝑥 = 0.1. 

 Calculate a search direction 𝑑𝑘 

 Get new well control vector by search on 𝑑𝑘, 

1) 𝑙 = 0; 𝑖𝑠 = 0; 

2)  𝑥𝑘+1
𝑡𝑟𝑖𝑎𝑙 = 𝑥𝑘 + 𝛼𝑘

𝑑𝑘

‖𝑑𝑘‖
; 

3) If 𝑓(𝑥𝑘+1
𝑡𝑟𝑖𝑎𝑙) > 𝑓(𝑥𝑘) accept 𝑥𝑘+1 = 𝑥𝑘+1

𝑡𝑟𝑖𝑎𝑙, 𝛼𝑘+1
0 = min (2 ∗ 𝛼𝑘

𝑙 , 𝛼𝑚𝑎𝑥), 

𝑙 = 0; 𝑖𝑠 = 0; 

Else, 

If 𝑙 > 𝑁𝑠𝑐 𝑎𝑛𝑑 𝑖𝑠 > 𝑁𝑠, terminate the algorithm 

If 𝑙 ≥ 𝑁𝑠𝑐 𝑎𝑛𝑑 𝑖𝑠 ≤ 𝑁𝑠, resample Ne ensembles, generate a new 

direction 𝑑𝑘 = 𝑑𝑘
𝑛𝑒𝑤, 𝑙 = 0, 𝑖𝑠 + + and return to 2) 

if 𝑙 ≤ 𝑁𝑠𝑐, 𝛼𝑘 = 
𝛼𝑘

2
, 𝑙 + +, return to 2)  

End If 

End If 

The steepest descent method is sensitive to the scaling of the problem. Highly 

skewed variable space leads to an inefficient search path and extra steps. Therefore, scaling 

is applied to normalize and map every element in the variable space onto the [0,1] interval 

by �̃�𝑖 =
𝑥𝑖−𝑥𝑖

low

(𝑥
𝑖
up

−𝑥𝑖
low)

 where 0 ≤ �̃�𝑖 ≤ 1. 𝑥𝑖
low is the lower bound of the independent variable. 

In the context of the research, it is 1000 psi (𝑃𝑙𝑜𝑤). 𝑥𝑖
up

 is the upper bound. In this study, it 

is 6000 psi (𝑃𝑖). 

Regarding stochastic gradient, an ensemble-based method was applied. The 

following is the gradient equation: 

 

𝛻𝑓 =
1

𝑁𝑒 − 1
𝐶𝑥 ∑(�̂�𝑗 − �̂�)(𝑓(�̂�𝑗) − 𝑓)

𝑁𝑒

𝑗=1

 
3.4 
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=
1

𝑁𝑒−1
𝐶𝑥 ∙ ∆�̂� ∙ ∆�̂�𝑇, 

where �̂�  is the sample mean (the average of the 𝑁𝑒  samples); 𝑓(�̂�𝑗)  represents the 

evaluation of the objective function. In this case, it means to run the simulator once and 

evaluate five-year NPV; 𝑓 is the average of the 𝑁𝑒 NPV values, namely, 
1

𝑁𝑒
∗ ∑ 𝑓(�̂�𝑗)

𝑁𝑒
𝑗=1 , 

and ∆�̂� is illustrated by the equation below. 

 ∆�̂� = [𝛿𝑓1,𝛿𝑓2,𝛿𝑓3, … , 𝛿𝑓𝑁𝑒] 

= [𝑓(�̂�1) − 𝑓, 𝑓(�̂�𝑗) − 𝑓, … , 𝑓(�̂�𝑗) − 𝑓]. 

3.5 

 

 

3.1.2 Optimization Solution and Comparison with Strategy One 

 

Strategy 1 is a “naïve” production control plan that keeps dropping BHP from the 

beginning of the development as was introduced in Section 1.2. In this case, the Strategy 1 

schedules the bottom hole pressure to drop from 6000 psi to 1000 psi with 80 psi per day. 

Consequently, it will take approximately two months before the wellbore pressure reaches 

1000 psi. 

Strategy 1 provides a reference solution and offers us the underlying potential of 

the reservoir. Comparison of the optimized schedule (Strategy 2) with the Strategy 1 

provides the possibility of determining whether there is space to optimize for a particular 

reservoir or determining how much more NPV can be obtained if the optimized schedule 

is implemented. Figure 3.1 (a) presents the well BHPs of the two solutions and Figure 3.1 

(b) compares the NPV. The yellow line in the plots represents the Strategy 1, while the red 

curve is the BHP and NPV for Strategy 2. An analysis based on OGR response was carried 

out as an explanation of the optimized well control pattern. 
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ng = 0.5 

 
        (a)                                                                 (b) 

Figure 3.1 Comparison of Strategy 1 and Strategy 2 for ng = 0.5 

 

For the ng = 0.5 case, the Strategy 2 started by quickly dropping the BHP, but 

suddenly the pressure was held at approximately 4800 psi and this hold period lasted about 

100 days (the pressure dropped very slowly during the 100 days). The BHP then started to 

fall again at an increasing rate and finally reached 1000 psi at the 480th day. The pressure 

control curve ended up with a convex shape.  

This pressure control pattern can be explained by partitioning the fractional flow 

curve into a strong and a weak OGR response parts. As was described in Section 2.3.2, 
𝜕𝑓𝑜

𝜕 𝑆𝑜
 

determine the intensity of the OGR response. The BHP should be monitored to decrease in 

a very small rate while the reservoir is within the strong response region because of the 

large slope of 𝑆𝑜-𝑓𝑜 curve (Figure 3.2). Otherwise a dramatic pressure drawdown would 

reduce the proportion of oil produced. Because the strong response region of this type of 

reservoir is very narrow (Figure 3.2), the oil saturation quickly “passed through” the strong 

part into a weak response region where dropping the pressure quickly becomes the best 

strategy. 
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Figure 3.2 Fractional Flow Curve and Response Zone for ng = 0.5 

 

ng = 1 

 
        (a)                                                                 (b) 

Figure 3.3 Comparison of Strategy 1 and Strategy 2 for ng = 1 

 

Like the ng = 0.5 case, the well control solution of the ng = 1 case had a hold period 

(from the 30th day to the 360th day) and a sharp decreasing period (from the 360th day to 

the 660th day). Nevertheless, fractional flow curve of the ng = 1 case is less steep but has 

a wider strong response region (Figure 3.4) which implies less negative effects for pressure 

dropping within strong response region. Thus, the pressure decline rate within the hold 
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period was not as slow as it was for the case with ng = 0.5. However, the hold time, on the 

contrary, lasted longer. 

 

Figure 3.4 Fractional Flow Curve and Response Zone for ng = 1 

 

ng = 2 

 
        (a)                                                                 (b) 

Figure 3.5 Comparison of Strategy 1 and Strategy 2 for ng = 2 

 

Unlike the previous two cases, the fractional flow curve of the ng = 2 reservoir is 

not concave and has a flat region at the rightmost part of the curve (Figure 3.6). The shape 

of the curve is an “S”. In other words, the second derivative of the curve is not monotonic. 

This new type of curve, especially its rightmost, part will significantly influence the 

production control strategy. 
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Compared with the former cases, Strategy 2 dropped the BHP much lower before 

the first pressure held at about 2500 psi. This control pattern indicates that the algorithm 

chooses to let the reservoir “skip” the rightmost weak response region. A second difference 

from former cases is that the “hold period” is not distinctly separated from other control 

periods. A reasonable explanation is that the fractional flow curve has a smoother shape 

than other cases so that there is no clear-cut distinction between the strong response region 

and the weak response part. 

Another important aspect is that, in terms of 5-year NPV, the optimized solution is 

only improved slightly compared to Strategy 1. The reason is that the slope of the ng = 2 

curve is not steep enough, at least not as steep as previous fractional flow curves. That 

means the strong response region of this case is not “strong” enough. Therefore, relatively 

weaker OGR response is expected when the pressure holds, and less increase of oil 

proportion is expected from the wellhead. 

 

Figure 3.6 Fractional Flow Curve and Response Zone for ng = 2 

 



40 

 

 

ng = 4 

 
        (a)                                                                 (b) 

Figure 3.7 Comparison of Strategy 1 and Strategy 2 for ng = 4 

 

As for the ng = 4 case, the optimized BHP control almost overlaps with the Strategy 

1 which implies that there was little space to optimize the well control. Note that the 

rightmost flat zone is relatively wide for this case (Figure 3.8). Because the reservoir was 

not able to pass through this range before the BHP reaches 1000 psi, there was no need to 

hold the pressure. 

 

Figure 3.8 Fractional Flow Curve and Response Zone for ng = 4 
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Based on the analysis above, holding BHP or slowing down the drop rate at an early 

production stage will inspire a positive OGR response, which would benefit the long-term 

NPV. Furthermore, it is reasonable to conclude that the optimal BHP control mostly 

depends on the characteristic of relative permeability, i.e., the particular shape of the 

fractional flow curve. When the fractional flow curve is concave, optimization solution 

may give a considerable improvement on NPV. The pressure hold timing and duration 

depend on the width and steepness of the strong response part of the fractional flow curves. 

For a reservoir with an ‘S-shape’ fractional flow curve, optimized well schedule may not 

able to show a significant advantage over the naïve BHP control. A conservative and risk-

free strategy for such reservoirs is to apply naïve control plan. 

  



42 

 

 

 

 

 

CHAPTER 4 
 

CHAPTER 4: DATA-DRIVEN WELL CONTROL ALGORITHM 

 

 

 

The reservoir development decision-making is usually challenging in the absence 

of accurate formation information. Processes like well testing and production logging will 

provide us important reservoir properties. However, acquisition of a comprehensive data 

set, in general, is a costly luxury that is not financially feasible for all investment budget 

ranges (Maysami, 2013). In reality, a significant portion of wells is controlled to produce 

at a low bottom hole pressure from the beginning of the development (the Strategy 1 

introduced in Section 1.2). This indiscriminate strategy might yield a relatively safe NPV 

if we are lucky. However, for mosf the time, the naïve well control will undermine the 

productivity potential of the reservoir. An economic decision-making method is badly in 

need. 

A data-driven algorithm is proposed which establishes a direct link between the 

next step production plan and the wellhead response. Compared with Strategy 1, the data-

driven solution (Strategy 3) leads to up to 15% increase on 5-year NPV. The Strategy 3 is 

negligibly inferior to the Strategy 2 that generated by optimization program regarding 

NPV. 

The data-driven algorithm was applied on the numerical simulation model 

introduced in Chapter 2, and the results were compared with Strategy 1 and Strategy 2. 

Given an arbitrary parameter setting, the algorithm worked perfectly for cases with concave 

fractional flow curves. For cases with ‘S-shape’ fractional flow, the final NPV given by 
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Strategy 1 and Strategy 2 have no distinct difference. In this case, the algorithm guarantees 

a solution that is at least as good as Strategy 1.  

 

 

4.1 Data-Driven Algorithm Description 

 

For simplicity, reservoirs with concave shape fractional flow curves (ng = 0.5 and 

ng = 1 cases) are defined as type A reservoirs and reservoirs with S-shape fractional flow 

curves (ng = 2 and ng = 4 cases) are entitled type B reservoirs.  

As was concluded in Chapter 3, production strategy of type B reservoirs has little 

room to improve. The Strategy 1 is already sufficient to yield a desirable NPV. In contrast, 

for type A reservoirs, a sharp pressure drop at the initial stage of reservoir development 

would undermine the productivity. A slower pressure drawdown or a pressure hold would 

initiate an oil saturation build-up and subsequently increase the proportion of oil flow to 

the surface. However, only pressure hold is applied in the data-driven algorithm because 

the slow pressure drawdown would be hard to control and output unclear OGR response.  

A combination of the conclusions of Chapter 2 and Chapter 3 implies that the OGR 

response from wellhead is a perfect indicator of the reservoir condition and potential 

productivity. A critical insight the surface OGR provides is that type B reservoirs can be 

distinguished from type A reservoirs through a pressure drop test below the bubble point 

pressure because type B reservoirs will respond a positive OGR while type A reservoirs 

will give an OGR response that is greater than zero (Figure 2.5). The second information 

the OGR would offer is the derivative of underground oil flow fraction towards the 

saturation. When the pressure holds, a strong positive OGR response implies that the 

reservoir saturation is within a strong response region (Figure 3.2 and Figure 3.4). Keeping 
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holding the BHP at this period of time will contribute to the final NPV. Conversely, when 

a near-zero OGR response is obtained, maintaining pressure becomes meaningless, and the 

best strategy is to drop the pressure as fast as possible and as soon as possible. 

The first part the algorithm is to screen type B reservoirs and directly apply Strategy 

1 on them. It is easy to accomplish by observing the OGR response the moment when Pb 

is reached. Such a moment is indicated by a sudden build up or drop in value of the surface 

OGR. If the OGR builds, the reservoir should be classified as type B. Otherwise, the 

reservoir is type A. The challenge of the algorithm lies in the second part. While the 

pressure hold would provide us significant reservoir information and benefit the long-term 

NPV to some extent, it is typically associated with high risk. The pressure is kept at the 

expense of the productivity if the drawdown is not yet large enough. Therefore, the 

decisions on the timing and duration for pressure hold are tricky to make. To improve the 

economic benefits as much as possible and lower the risk at the same time, a well control 

strategy is designed that separates the production lifetime into multiple time slices. Within 

each time slice, the bottom hole pressure is constrained to drop first and then hold suddenly. 

The well control of each time slice is defined as a drop hold cycle (DHC). For example, 

Figure 4.1 shows a 3-DHC control scheme. Each time slice lasts 45 days where the pressure 

drops for 5 days and then holds for the rest 40 days. 
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Figure 4.1 Drop-Hold-Cycle Well Control Scheme 

 

Such well control pattern make it possible for decision makers to acquire reservoir 

information and update development plans every interval of time. It reduces the risk and 

retrieve reservoir information as much as possible. At the end of each time slice, the OGR 

response over the hold period is recorded and the average OGR response per day (response 

rate) is calculated. For the application on a real reservoir, the response rate should be 

estimated by fitting a linear regression model to the noisy production data. While for the 

numerical simulation cases, the response rate is simply equal to the OGR difference of last 

and first day divided by duration of hold period. In this algorithm, the response rate serves 

as the termination criterion to break the DHC. The DHC will be stopped if the response 

rate of the last cycle is smaller than a minimum response rate (MRR). BHP will then be 

dropped with a reduced rate to the lowest allowed to achieve maximum drawdown (Figure 

4.2). 
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Figure 4.2 An Example of Data-Driven Well Control Strategy 

 

There are four major parameters need to be set for this algorithm: the maximum 

pressure drop rate (MPDR), the minimum response rate (MRR), the Drop Interval (d) and 

the Hold-Drop-Ratio (r). The MRR is the criterion for stopping the DHC. The d is the time 

applied to drop BHP within each DHC. The r denotes the ratio between hold time and drop 

time. MPDR (set to be 80 psi/day in this study) is usually limited by the capability of the 

bottom hole choke while MRR, d and r depend on human choice. The choosing of these 3 

parameters will be demonstrated in a later section. The pseudo-code of the algorithm is 

given below. 

Data-driven Algorithim 

 Drop the pressure to 𝑷𝒃 with maximum pressure drop rate (MPDR) 

 𝑵𝒄 = 0 

 Try the first DHC, if 
𝜕𝑂𝐺𝑅

𝜕𝑡
> 0 at the start of the first DHC, 

o Stop doing DHC and return Strategy 1; 

 Else, 

o DO 

 DHC 

 𝑁𝑐 + + 

 Compute response rate for hold period 

 IF (response rate < minimum response rate) 

 Drop BHP to 𝑃𝑙𝑜𝑤 with slope MPDR/𝑁𝑐 

 Break the loop 

o ENDDO 

 ENDIF 
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The algorithm is tested with MPDR = 80 psi/day, d = 5 days, r = 16 and MRR = 

1e-4. The BHP control solution carries out four DHCs before the final drop (Figure 4.3 

(a)). Figure 4.3 (b) and Figure 4.3 (c) give the variation of OGR and response rate. 

The OGR bounds up for each DHC, and it shows a general declining trend. The 

response rate keeps decreasing for each DHC and the last hold returns a response rate that 

is smaller than the minimum MRR. The algorithm is terminated at 𝑁𝑐 = 4 and the BHP is 

then dropped to 𝑃𝑙𝑜𝑤 with 20 psi/day (MDR/𝑁𝑐). 

 
        (a)                                           (b)                                               (c) 

Figure 4.3 BHP, OGR Response and Response Rate for a Data-Driven Solution 

 

 

 

4.2 Basic Solution of the Data-Driven Algorithm 

 

Setting 5 year NPV as the objective function, the BHP control strategies generated 

by the data-driven algorithm (Strategy 3) are compared with Strategy 1 and Strategy 2. 

Note NPV in the following case is computed with 45$/bbl oil price, 2.2$/MMBtu gas price 

and 12% cash depreciation rate. 

In all cases, all algorithm parameters are set as follows: MPDR = 80 psi/day; MRR 

= 1e-4; d = 5 days; r = 16. The NPV versus Time is presented by the following figures, 

where the yellow curve represents Strategy 1, the red curve denotes Strategy 2 and the blue 

curve is Strategy 3 results. 
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ng = 0.5 

 
      (a)                                                             (b) 

Figure 4.4 Comparison of Strategy 1, 2, 3 on NPV for ng = 0.5 

 

In ng = 0.5 case, the algorithm run 2 DHC before termination, which indicates that 

the response rate of the first hold period is strong, but decreased for the second DHC. 

Following the same mechanisms discussed in Section 3.1.2, it is clear that the saturation 

dropped into the weak response region when the second DHC was carried out. The 

performance of the Strategy 3 was as good as optimized well control and they both are 

much better than the Strategy 1 in terms of 5-year NPV. 

ng = 1 

 
      (a)                                                             (b) 

Figure 4.5 Comparison of Strategy 1, 2, 3 on NPV for ng = 1 

 

Four DHCs was run before the algorithm terminated for the ng=1 case. This is self-

explanatory that since the fractional flow curve is less steep, it took more cycles for the 
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saturation to fall into the weak response part. The Strategy 3 performed comparably to the 

optimized solution and they both yielded greater NPV prediction than the Strategy 1. 

ng = 2 

 
      (a)                                                             (b) 

Figure 4.6 Comparison of Strategy 1, 2, 3 on NPV for ng = 2 

 

The Strategy 3 overlapped with the Strategy 1 for both ng = 2 and ng = 4 cases 

(Figure 4.6 (a) and Figure 4.7 (a)) which implies the Strategy 1 is already a satisfactory 

solution for type B reservoirs. The final NPV of the Strategy 3 is acceptably smaller than 

the Strategy 2 for ng = 2 case (Figure 4.6 (b)).  

ng = 4 

 
      (a)                                                             (b) 

Figure 4.7 Comparison of Strategy 1, 2, 3 on NPV for ng = 4 
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The data-driven algorithm led to the same well controls as the optimization result 

for ng = 4 case. Again, this is because the its fractional flow curve has a very wide weak 

response region at the rightmost part (Figure 3.8) which yields no space for optimization. 

A quick application of the data-driven algorithm on four synthetic reservoirs proved 

that it is able to offer desirable BHP control plans. The algorithm yielded a naïve well 

control strategy for type B reservoir which simple and risk-free. The application on type A 

suggested an active drop-and-hold production control pattern which is near-optimal and 

easy to apply. 
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4.3 Discussion on Parameter Setting 

 

As shown in the last section, the data-driven algorithm led to suitable production 

plans for all cases. Type B reservoirs could benefit from the scheme with no further 

concerns because the Strategy 1, in this scenario, is already an optimal or near-optimal 

solution. As long as the asset can be categorized as type B through dropping test below the 

bubble point, the improved well control is determined instantaneously. However, the 

application on type A reservoir still needs more work to select the parameters which were 

discussed in Section 4.1. The following discussion on parameter choice is only for the non-

naïve solution of the algorithm. 

 

 

4.3.1 Choice of Hold-Drop-Ratio (r) 

 

Though rigorously the pressure is not dropped steadily, the DHCs can be considered 

a BHP drop with a constant rate. In essence, the value of hold-drop-ratio determines the 

‘average drop rate’ of the DHC period. A larger r indicates a smaller average drop rate 

since more proportion of time is applied to hold the pressure, and it can be risky because 

longer hold time wastes the opportunity to increase drawdown for better productivity.  

In this section, a sensitivity analysis on r is carried out on type A reservoirs of 

various fluid properties. The drop interval (d) was set to be 5 days, r took the value of 4, 

16 and 32 to make comparisons. As the drop interval is constant, bigger r means longer 

holding time. Different settings of r are compared in the figures below in which the blues 

represent r = 4 (pressure holding time equals to 20 days), the red denotes r = 16 (holding 
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time equals to 80 days) and the yellow line stands for r = 32 (holding time equals to 160 

days). 

ng = 0.5 

 
      (a)                                                             (b) 

Figure 4.8 Sensitivity Analysis on Hold-Drop-Ratio for ng = 0.5 Case 

 

The larger hold-drop ratio yielded a better strategy for the ng = 0.5 case. The cases 

of r = 16 and r = 32 generated comparable NPV predictions and were both better than the 

r = 4 solution. The r = 16 solution is conservative because it tends to return more cash flow 

at the beginning stage. 

ng = 1 

 
      (a)                                                             (b) 

Figure 4.9 Sensitivity Analysis on Hold-Drop-Ratio for ng = 1 Case 
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The r = 16 led to the best solution for ng = 1 case. Similar with  the ng = 0.5 case, 

the r = 4 predicts less NPV than the other 2 cases. 

The choice of r is essentially the tread off between performance and risk. A larger 

hold-drop-ratio makes longer hold which benefits long term interests for a reservoir with 

strong OGR response. On the other hand, a small hold-drop-ratio weighs more on the effect 

of a significant drawdown to improve productivity. 

 

 

4.3.2 Choice of Drop Interval (d) 

 

Another test is made to the analyze the selection of drop interval (d). The d 

determines the duration of each DHC which in turn reflects the frequency that the decision 

makers retrieve reservoir information through the OGR response. A small drop interval 

updates information more frequently and takes shorter interval to make new decisions. 

Theoretically, the smaller drop interval is better because more details is provided for 

decision-making. But, in reality, small drop interval may yield unclear OGR response 

because the influence of the last DHC’s pressure wave needs time to fade out. 

ng = 0.5 

 
      (a)                                                             (b) 

Figure 4.10 Sensitivity Analysis on Drop Interval for ng = 2 Case 
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In this section, hold-drop-ratio was set to be 16; d took the value of 3, and 5 to make 

a comparison. Figure 4.10 and Figure 4.11 give the improved strategies of ng = 0.5 and ng 

= 1 respectively. For two different drop interval values, the well controls were carried out 

in the same manner: First, the ‘average drop rate’ of DHCs are the same as long as the 

hold-drop-ratios are equal; Second, the DHC terminated at a similar time. Consequently, 

NPV vs time curves of both cases are almost the same. 

ng = 1 

 
      (a)                                                             (b) 

Figure 4.11 Sensitivity Analysis on Drop Interval for ng = 1 Case 

 

An important aspect is that different parameter setting for the algorithm did not 

make very big difference regarding final NPVs. (Figure 4.8-Figure 4.11). This implies that 

the algorithm performance is quite stable, and few efforts are required to take on the 

parameter selection. For all cases we have tested, parameter setting in Section 4.2 (r = 16 

and d = 5) is a desirable choice. 

 

  

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000

B
H

P
(p

si
)

time(day)

d=5days

d=3days

0

200

400

600

800

1000

1200

0 500 1000 1500 2000

N
P

V
(1

,0
0

0
$

)

time(day)

d=5days

d=3days



55 

 

 

 

 

 

CHAPTER 5 
 

CHAPTER 5: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

5.1 Summary and Conclusions 

 

The thesis has three main parts. 1, the introduction of a well control generating 

algorithm as well as a discussion on its parameter selection, 2, the verification of the 

algorithm’s performance through comparisons with model-based optimization results, and 

3, the illustration of the underlying physics behind the proposed method. 

Based on the study of this thesis, the following conclusions were made: 

1. For unconventional reservoirs developed with multi-stage fractured wells, 

the relationship between the BHP and oil saturation of the hydraulic fracture 

can be described as: (1) When the BHP drops below Pb, the oil saturation 

decreases simultaneously with the pressure. (2) When the BHP is kept 

constant after a dramatic drawdown, the saturation within hydraulic fracture, 

as well as its proximity, will build up as the gas phase move backward into 

the reservoir. 

2. The wellhead OGR response is a combination of both pressure and 

saturation contributions. When the BHP drops and the oil flow fraction is 

sensitive to the saturation, the contribution of saturation will dominate. 

Otherwise, pressure contribution will overwhelm. When the BHP is 

maintained, and subsequently saturation builds up, a positive OGR response 

is expected, and the intensity of the OGR response is determined by the 
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fractional flow property. The OGR response, in turn, provides significant 

information about the reservoir fluid and is able to assist production 

decision-making 

3. The optimization results indicate that type A reservoir would benefit from 

slowing down pressure drop and type B reservoirs have limited room for 

improvement. 

4. The proposed data-driven algorithm is capable of increasing the five-year 

NPV for type A reservoirs by up to 15% and guaranteeing a near-optimal 

solution for type B reservoirs The method is characterized by low risk and 

could be served as complementary for the model-based optimization. 

 

 

5.2 Recommendations 

 

The method introduced in the thesis offers a great possibility to improve the 

production plan for fractured unconventional reservoir developed by natural energy at the 

beginning stage. However, the uncertainty and complexity inherent in the field data would 

hinder the application of the algorithm on real reservoirs. A significant difference between 

the output of a real reservoir and a simulation model is that the real history data can be very 

noisy while the simulation data is associated with less fluctuation. The history data is 

typically biased because of the dynamic interaction between the fluid flow and wellbore 

and the presence of measurement error while the simulation always reflects the true 

response of the numerical reservoir model. The measurement error, to some extent, could 

be addressed by applying a statistical scheme. The influence of wellbore (e.g. wellbore 
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storage effect), however, requires more efforts on the establishment of a mature wellbore 

model. 

A detailed procedure for practical application of the algorithm is listed below. 

1. Start to drop the BHP with the maximum rate; Keep dropping the pressure 

until a lasting change on OGR is observed (Try to distinguish a significant 

change from common variation); The change indicates that the bubble point 

pressure is reached; 

2. If the OGR increases, carry out Strategy 1 and the algorithm is over, 

otherwise, 

3. Start DHCs: record OGR data and bootstrap multiple ensembles of the OGR 

data (explained by Figure 5.1 and Figure 5.2); make sure the data is 

collected as (t, OGR) pairs; Fit lines for each ensemble and treat the slope 

of each line as the samples of response rate; 

4. Compute the 95% confidence interval for the response rate; If the lower 

bound of the interval is greater than the minimum response rate, return to 

step 3 and keep doing DHC. Otherwise, terminate the DHCs and drop 

pressure with a reduced rate. 

The performance and risk trade-off could be manipulated by applying different 

confidence interval. Field tests remain to be done to select a desirable confidence level. 

A example is given for step 3 to illustrate how to the bootstrap works. For simplicity, 

it was assumed that ten pairs of (t,OGR) data was obeserved during the hold period of a 

DHC. Figure 5.1 shows a linear model fitted by the full data set. Four ensembles were 

generated through ramdon sampling and linear models were trained by the four set of data. 
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The fitted models are demonstrated in Figure 5.2 in which drak blue respresents the 

sampled data and light blue is the unselected data. The sampling process should be done 

with replacement. The ensenble data size was set to be 7. However, only 5 data points are 

displayed on each plots of Figure 5.2 because two data points have been sampled twice. 

 
Figure 5.1 Linear Regression with Full Data 

 

 
           (a) Ensemble No.1                                           (b) Ensemble No.2    

 
          (c) Ensemble No.3                                           (d) Ensemble No.4 

Figure 5.2 Linear Regression with Sampled Data  
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SYMBOLS 

 

 

 

𝛼𝑘 Line search step size  

𝐶𝑝 The contribution rate of 

pressure to OGR response 

 

/psi 

𝐶𝑠 The contribution rate of 

saturation to OGR response 

 

/psi 

𝑑 Time used to drop BHP for 

each DHC 

 

day 

𝑑𝑘 Search direction for kth step  

𝐸 Minimum response rate /day 

𝑓𝑜 Oil flow fraction  

𝐻 Time used to hold BHP day 

𝑘𝑓𝑟 Fracture permeability md 

𝑘𝑟𝑔 Relative gas permeability md 

𝐾𝑟𝑔,𝑚𝑎𝑥 Maximum gas saturation md 

𝑘𝑟𝑜 Relative oil permeability md 

𝐾𝑟𝑜,𝑚𝑎𝑥 Maximum oil saturation md 

𝑁𝑐 Number of drop-hold cycle  

𝑁𝑒 Ensemble Size  

𝑛𝑔 Gas exponent in Corey model  

𝑛𝑜 Oil exponent in Corey model  
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𝑃𝑏 Bubble point pressure psi 

𝑃𝑙𝑜𝑤 Lowest BHP allowed psi 

𝑃𝑖 Initial reservoir pressure psi 

𝑟 hold-drop-ratio  

𝑅𝑠 Solution gas oil ratio mcf/stb 

𝑆𝑔𝑐 Critical gas Saturation  

𝑆𝑜𝑟 Residual oil Saturation  

�̃�𝑖 Scaled Variables  

𝑥𝑘 
Independent Variables for kth 

step 

 

 

𝜇𝑔 Gas viscosity cp 

𝜇𝑜 Oil viscosity cp 
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ABBREVIATIONS AND CONCEPT DEFINITIONS 

 

 

 

Abbreviations  

DHC BHP Drop Hold Cycle 

GOR Production Gas Oil Ratio 

MPDR Maximum Pressure Drop Rate 

MRR Minimum Response Rate 

NPV Net Present Value 

OGR Production Oil Gas Ratio, equal to 1/GOR 

  

  

  

Concept Definition  

Contribution Rate Influence on the OGR per unit pressure or saturation change 

Drop Interval (d) Time used to drop BHP within each DHC 

Hold Interval (h) Time used to hold BHP within each DHC 

Hold-Drop-Ratio (r) Hold interval / Drop interval 

Response Rate OGR response / Hold interval 

Strategy one The well control strategy that drop BHP to Plow and keep to end 

OGR Response Change of OGR within a certain Hold Interval 
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APPENDIX A 

 

RESERVOIR PARAMETERS FOR THE SIMULATION MODEL 

 

 

 

Table 6.1 Basic Reservoir Parameter 

Reservoir Parameters 

grid dimension 1720 23 1 

reservoir dimension 2000 ft 300 ft 200 ft 

porosity 0.03     

X  permeability 100 nd     

Y  permeability 100 nd     

Z permeability 30     

Density(Oil, Water, Gas) 49.1 64.79 0.06054 

ROCK compressibility 3.00E-06     

Bubble point pressure(Pb) 5000 psi     

Initial reservoir pressure(at mid deep) 6000 psi     

Fracture Parameters 

single fracture dimension 0.01 ft hf 150ft 200ft 

porosity of fracture 1     

X  permeability of fracture 1000 md     

Y  permeability of fracture 1000 md     

Z  permeability of fracture 1000 md     

configuration 10stages, 40 fractures 

Well Parameters 

well diameter 0.4 ft     

number of fractures intersect 40     
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Table 6.2 Oil PVT 

Rs (cf/std) Rs (mcf/std) P (psi) Bo (rb/std) µ (cp) 

140 0.14 800 1.2 1.09 

180 0.18 1000 1.225 1.01 

220 0.22 1200 1.24 0.96 

260 0.26 1400 1.28 0.9 

300 0.3 1600 1.285 0.85 

350 0.35 1800 1.31 0.77 

400 0.4 2000 1.335 0.74 

450 0.45 2200 1.36 0.70 

500 0.5 2400 1.385 0.66 

550 0.55 2600 1.41 0.62 

600 0.6 2800 1.43 0.58 

650 0.65 3000 1.46 0.54 

710 0.71 3200 1.485 0.51 

840 0.84 3600 1.55 0.45 

980 0.98 4000 1.62 0.40 

1130 1.13 4400 1.675 0.37 

1310 1.31 4800 1.73 0.35 

1405 1.405 5000 1.76 0.335 

1500 1.405 5200 1.75 0.34 

1700 1.405 5600 1.74 0.36 

1910 1.405 6000 1.73 0.37 

2120 1.405 6400 1.71 0.39 

2330 1.405 6800 1.7 0.40 
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Table 6.3 Gas PVT Table 

P (psi) Bg (rb/scf) µg (cp) P (psi) Bg (rb/scf) µg (cp) 

800 4.518264 0.012798 3200 1.030154 0.023541 

1000 3.287464 0.013918 3600 0.922554 0.025141 

1200 2.90367 0.014908 4000 0.814954 0.026741 

1400 2.58707 0.015888 4400 0.748581 0.02838 

1600 2.27047 0.016868 4800 0.683781 0.03002 

1800 1.95387 0.017848 5000 0.651381 0.03084 

2000 1.63727 0.018828 5200 0.636817 0.031646 

2200 1.495408 0.019604 5600 0.610517 0.033256 

2400 1.367408 0.020364 6000 0.584217 0.034866 

2600 1.257492 0.021141 6400 0.557917 0.036476 

2800 1.171892 0.021941 6800 0.531617 0.038086 

3000 1.086292 0.022741    

 

 


