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In the development of naturally fractured reservoirs, the existence of natural 

fractures induces severe fingering and breakthrough. To manage the flood and to improve 

the ultimate oil recovery, we propose a numerical workflow to generate optimal production 

schedules for smart wells, in which well segments can be controlled individually. 

In the first part of this work, the embedded discretized fracture model has been used 

to model the flow through the naturally fractured reservoir. In addition, stochastic gradient 

approximation methods have been used to compute gradients for production optimization 

using optimal control theory. Although EnOpt is a high performance algorithm for robust 

optimization, when a large ensemble is used, it requires a large amount of ensemble run 

for a gradient estimation which is computationally inefficient. To improve the efficiency 

of robust optimization, a clustering method is proposed to group similar fracture models 

based on their model parameters and response similarity. Both hierarchical clustering and 

the k-means method have been chosen as the clustering methods to group fracture models. 
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In the second part of this thesis, a data assimilation framework has been proposed 

to reduce the uncertainty introduced by natural fractures. Synthetic observed production 

data is generated by the EDFM fracture model. Then the Ensemble Smoother-with Multiple 

Data Assimilation algorithm is selected as the history matching method to update fracture 

parameters for a Dual Porosity Dual Permeability (DPDK) model. The DPDK models, 

which have been constrained by observation data, are treated as input ensemble models for 

robust optimization. The optimal well controls obtained from robust optimization would 

be approximate optimal well controls for the real scenario. 
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CHAPTER 1 
 

CHAPTER 1: INTRODUCTION 
 

 

 

Water flooding processes are commonly applied in the oil industry to increase oil 

production and enhance oil recovery. In a naturally fractured reservoir, the natural fractures 

serve as highly conductive flow paths for the reservoir fluid, which will result in the 

breakthrough of the waterfront. The breakthrough of water would not only cause the 

inefficient water flood (low sweep effect) but would also cause the increase of water 

disposal fees. Maintaining a stable waterfront should be an important consideration to 

increase oil production and decrease disposal water production in the development of 

naturally fractured reservoirs. So determining the optimal BHP for production wells as well 

as injecting rates for injection wells are critical steps in preparing the development plan for 

a naturally-fractured reservoir. 

Production optimization is a challenging due to the high dimension and complexity 

of the search space and nonlinearity introduced by natural fractures. Also, the optimization 

is computationally very demanding as every objective function evaluation requires a 

reservoir simulation run. Moreover, it is challenging to determine the number, distribution 

and properties of natural fractures, they increase nonlinearity and uncertainty of the 

optimization problem. Therefore, an efficient, robust production optimization framework 

for naturally fractured reservoirs is desirable. 

Brouwer and Jansen (2004) developed a systematic dynamic optimization approach 

based on optimal control theory and investigated the scope for optimization under purely 
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pressure-constrained and purely rate-constrained operating conditions. They used ICV 

settings as the control variables in the pressure-constrained scenario where the wellbore 

pressures were preselected, i.e., the wellbore pressures were fixed throughout the 

optimization process. Naus et al. (2006) proposed an operational strategy for commingled 

production with ICVs using Sequential Linear Programming (SLP) which is based on the 

simplex algorithm, where ICVs were modeled as a multiplication factor of PI's with values 

between 0 and 1.0. Van Essen et al. (2010) implemented a gradient-based optimization 

technique to optimize the ICVs of a field-scale reservoir. They proposed a dynamic 

grouping approach based on a visualization of the optimal ICVs which were obtained at 

the first stage of their workflow. However, as observed by Fonseca et al. (2015b), having 

fewer ICVs results in a loss of controllability and thus an optimized strategy with a lower 

NPV. Alhuthal et al. (2010) proposed an approach that relies on finite-difference or 

streamline-based models to optimize the production/injection rates of designated ICVs 

which maximizes the water flooding sweep efficiency, where the optimization was 

performed under operational and facility constraints using a sequential quadratic 

programming approach. Li and Zhu (2011) proposed a procedure of applying temperature 

distribution data as a feedback to operate ICVs to achieve an approximately uniform flow 

distribution and to increase oil flow rate and delay early water breakthrough.  

EnOpt has become a popular method for the estimation of optimal well controls 

(e.g., water rates and bottom hole pressures) in the oil and gas reservoir engineering 

optimization community. Inspired by the Ensemble Kalman Filter (EnKF) method, it was 

first introduced by Lorentzen et al. (2006) and Nwaozo (2006). The standard formulation 

of the EnOpt algorithm which uses an ensemble of randomly perturbed control vectors to 
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approximate a gradient of the objective function was proposed by Chen et al. 

(2009).Thereafter, several modifications of the Chen et al. formula have been made for 

production optimization (Do and Reynolds, 2013; Fonseca et al., 2015b).  

As we mentioned in the preview section, randomly distributed natural fractures 

introduce a great amount of uncertainty into our production optimization system. In order 

to reduce uncertainty and generate a reliable optimization scheme, the production history 

can be used to better constrain the reservoir model. This data assimilation process is widely 

known in the oil industry as history matching. Two classes of approaches are commonly 

used to match production history in earth science: 1) gradient-based history matching 

methods 2) gradient-free history matching methods. 

A gradient-based history matching problem can be treated as a high dimensional 

optimization problem that treats the posterior probability function as the objective function. 

Although the adjoint method can improve the efficiency of the backward run compared 

with finite difference and the directional methods, it is difficult to derive the formulation 

of the adjoint method for different parameters. In the last decade, ensemble-based methods, 

which are gradient-free methods have been widely investigated and applied for data 

assimilation of flow problems associated with petroleum reservoir history matching. The 

ensemble Kalman filter, which was summarized by Oliver and Chen (2010) is the most 

popular for history matching applications due to its efficiency and ease of implementation. 

However, with EnKF, there exist potential inconsistencies between the updated model 

parameters and states, and the method often yields a relatively poor data match. The 

Ensemble Smoother with Multiple Data Assimilation (ES-MDA) (Emerick and Reynolds, 

2012) attempts to correct this defect of EnKF. Furthermore, the ES-MDA makes the 
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matching of more flexible parameters possible. In this work, ES-MDA has been used as a 

history matching method to generate proper ensembles for the robust optimization 

algorithm. 

 

 

 

1.1 Research Contribution 

 

The generation of an optimal development plan for NFRs is a practical problem of 

timely interest. The first contribution of this work is to apply production optimization 

algorithms to NFRs. In this work, the EnOpt algorithm has been used to compute stochastic 

gradients for production optimization. The geological uncertainty introduced by natural 

fractures also has been considered in robust optimization. However, there are substantial 

uncertainty in fracture number, position, and properties (permeability, aperture, porosity). 

So the ensemble size should be very large to represent all possible underground cases. 

Robust optimization with large ensemble size is extraordinarily inefficient and 

computationally expensive. To improve the efficiency of the robust optimization 

algorithm, three clustering methods are proposed to reduce redundant ensemble runs. By 

using clustering algorithms to group different fields, we could significantly improve the 

efficiency of robust optimization without scarifying expected NPV for the optimal case. 

The second contribution of this work is to propose a closed-loop reservoir 

management framework to develop NFRs. Closed-loop reservoir management has two 

major steps: production optimization and data assimilation. In practice it is challenging to 

select parameters for DFMs. So the dual porosity DP-DK model has been applied as a 

forward model to match the synthetic observation data, which was generated by Embedded 

Discrete Fracture Model (EDFM). The fracture permeability and pore volume field will 
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indicate the probability distribution of fracture field. Then an ensemble of these fields will 

be used as input models for robust optimization algorithm to generate optimal production 

rate. 

 

 

 

1.2 Thesis Outline 

 

There are 5 chapters and one appendix in this thesis. At the beginning of Chapter 

2, we briefly introduce the EDFM, which has been used to generate NFR models. The 

steepest ascent method, EnOpt method and formulation of objective function are also 

illustrated, in this chapter. Chapter 3 presents details of robust optimization for NFRs; the 

k-means and hierarchical clustering methods are also introduced to reduce redundant 

ensembles in the robust optimization. Both model parameters and responses for the 

different models have been chosen as different features to group the fracture model. The 

computational results for regular robust optimization and clustered optimization are 

compared and analyzed in this chapter. Chapter 4 covers the framework of history 

matching and optimization for NFRs. After assimilating the production data, these fields 

have been input as ensembles for robust optimization. Then the robust optimal well 

controls have been compared with real optimal well controls are generated using the true 

field. In the computational results section, we compare the DP-DK fields with the true 

DFM field, which are used to generate synthetic observation data after assimilation. 
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CHAPTER 2 
 

CHAPTER 2: PRODUCTION OPTIMIZATION IN NFRS 
 

 

 

Natural fractures serve as highly conductive flow paths for reservoir fluid, 

increasing the reservoir's heterogeneity and effective permeability significantly over that 

attributable to the rock matrix. To develop a naturally fractured reservoir without a water 

drive, the only mechanism to produce oil would be the expansion of reservoir fluids, which 

would cause small estimated ultimate oil recovery. On the other hand, water injection 

would result in easy breakthrough of water through the fracture. This lead to an inefficient 

sweep as well as to significant water disposal costs. Due to the geological complexity and 

heterogeneity introduced by natural fracture, it is unrealistic to design a generic 

development strategy fit for any naturally fractured reservoirs. 

In this chapter, a numerical framework has been proposed to simulate fluid flow 

and optimize well controls in naturally fractured reservoirs. To simulate reservoir fluid 

flow in the natural fractures, the embedded discretize fracture model (EDFM) is applied. 

To maximize cumulative oil production rate, while minimizing water production and 

injection rate, we define the NPV of production from a reservoir as the objective function 

to be maximized in the production optimization problem. We briefly explain the steepest 

ascent algorithm and the scaling scheme that have been used as a basic line search 

algorithm to find optimal BHPs for producers and injection rates for injectors. EnOpt is 

also introduced as a method to generate the stochastic gradient for the steepest ascent 

algorithm. In the computational results section, two examples are presented. In the first 
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example, the workflow to set up nominal optimization in NFRs was illustrated. In the 

second example, several optimization schemes with stochastic gradients are compared with 

each other. The detailed form of the specific production optimization problems defined in 

naturally fractured reservoirs is given in the following chapter. 

 

 

 

2.1 Models and Methods 

 

 

2.1.1  Embedded Discrete Fracture Method 

 

In naturally fractured reservoirs, the randomly distributed fracture position, 

orientation and properties introduce a large amount of uncertainty into optimization 

system. J Jiang et al (2015) compared the performance of EDFM model with Unstructured 

Discrete Fracture Method (USDFM) and conclude that EDFM can provide better 

computational efficiency relative to USDFM while adequately capturing sharp transient in 

naturally fracture. 

In EDFM, there are three kinds of noneighboring connections (NNCs), which are 

fracture-matrix connections, fracture-fracture intersections and fracture-well connections 

respectively. The formulation of these three NNCs is given as follows:  

For a NNC between matrix and fracture cell, the transmissibility is 

                                        𝑇𝑚𝑓 =
𝑘𝑚𝑓𝐴

𝑑𝑚𝑓
 ,                                                               (1) 

where, 

                                        𝑑𝑚𝑓 =
∫ 𝑥𝑛𝑑𝑣

𝑉
 ,                                                              (2) 

𝐴 is the fracture surface area in the grid block, and 𝑘𝑚𝑓 is defined as a harmonic average 

of the matrix and fracture permeability. Li and Lee (2008) assumed that pressure varies 
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linearly in the direction normal to each fracture within each grid block and using Eq.(2), 

the average normal distance ,𝑑𝑚𝑓 , is computed for matrix fracture connections. The 

enumerated method and numerical integration have been used in our preprocessing code 

to calculate these parameters, where 𝑑𝑣 is matrix volume element, 𝑥𝑛 is normal distance 

of the element from the fracture plane and 𝑉 is volume of a grid block.  

For the NNC between fracture intersections, we calculate the harmonic average of 

transmissibility, 

                                        𝑇𝑓𝑓 =
𝑘𝑓𝑓𝐴

𝑑𝑓𝑓
=

2 𝑇1𝑇2

𝑇1+𝑇2
 ,                                                                         (3) 

where,  

                                      𝑇𝑖 =
𝑘𝑓𝑖𝑤𝑓𝑖𝐿𝑖𝑛𝑡

𝑑𝑓𝑖
 (𝑖 = 1 ,2) ,                                                             (4) 

𝑤𝑓𝑖 is aperture of the 𝑖𝑡ℎ fracture segment, 𝑘𝑓𝑖 is fracture permeability of the 𝑖𝑡ℎfracture 

segment; 𝐿𝑖𝑛𝑡is the length of the intersection, and 𝑑𝑓𝑖 represents weighted distance from 

the 𝑖𝑡ℎ intersection to each fracture segment.  

The well index for well bores intersected by natural fractures is 

                                                   𝑊𝐼 =
2𝜋𝑤𝑘𝑓

log (𝑟𝑜/𝑟𝑤)
,                                                               (5) 

where, 

                                                𝑟𝑜 = 0.14√𝑙2 + ℎ𝑓
2 ,                                                (6) 

𝑙 is the length of fracture segment and ℎ𝑓 is the fracture height.  

 

 

2.1.2  Definition of NPV and Optimization Problem 
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The objective function in this work is the NPV of a time series of cash flow. For 

the two-phase flow of oil water, NPV is defined by:  

 𝑁𝑃𝑉 = ∑{[∑[𝑞𝑜𝑗𝑛 ∗ 𝑟0 − 𝑐𝑤 ∗ 𝑞𝑤𝑗𝑛]

𝑝

𝑗=1

− ∑[𝑐𝑤𝑖 ∗ 𝑞𝑖𝑤𝑗𝑛]

𝐽

𝑗=1

] ∗ 𝛥𝑡/

𝑁

𝑛=1

1 + 𝑏𝑡/365},        (7) 

So the optimization problem is 

MAX {NPV}        s.t.  𝑢𝑙𝑜𝑤 < 𝑢<   𝑢𝑢𝑝 ,        (8) 

where 𝑟0  is oil rate, 𝑐𝑤  is the disposal cost of produced water, 𝑐𝑤𝑖  is the water 

injection cost, b is annual inflation rate. 𝑡𝑛 is time at the end of the 𝑛𝑡ℎ period, 𝛥𝑡 is 𝑛𝑡ℎ  

time step size, and N is the total number of time steps, P is the number of producer, I is the 

number of injector, 𝑞𝑜𝑗𝑛 denote the average oil rate and rate at the 𝑗𝑡ℎ producer well for 

the 𝑛𝑡ℎ time step, 𝑞𝑤𝑗𝑛 is the average water rate and rate at the 𝑗𝑡ℎ producer well for the 

𝑛𝑡ℎ time step, whereas 𝑞𝑖𝑤𝑗𝑛 is the average injecting rate at 𝑗𝑡ℎ injector well for the 𝑛𝑡ℎ 

time step. Note that in Eq.7 we have assumed constant economical parameters for whole 

production life of a reservoir.  

 

 

2.1.3  Gradient Calculation 

 

EnOpt is a stochastic gradient-based optimization method that uses an ensemble of 

control vectors to estimate an approximate gradient of the objective function with respect 

to the well control vector. A single control vector is defined as  

                                          𝑢 = [𝑢1, 𝑢2, 𝑢3, … ,   𝑢𝑁],                                              (8) 

Where 𝑁 is a total number of control variables (e.g. BHP for producers, injecting rate for 

injectors over each control time). In the original EnOpt, a multivariate, Gaussian-

distributed ensemble is generated with a distribution mean �̅� , ensemble size M, and a 
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predefined distribution covariance matrix. Several modifications of EnOpt formula have 

been made for production optimization (Do and Reynolds, 2013; Fonseca et al., 2015b). 

Instead of using �̅�, the control variable from last iteration step 𝑢𝑗−1 is used. To estimate the 

gradient, a mean-shifted ensemble matrix is defined as: 

                                                 �̅� = [𝑢1 − �̅�, 𝑢2 − �̅�, … 𝑢𝑀 − �̅�],                                     (9) 

Similarly, a 𝐽 -shifted objective function vector is defined as (where 𝐽 is the value 

of objective function last timestep): 

                                        𝐽 = [𝐽1 − 𝐽 ̅, 𝐽2 − 𝐽̅… 𝐽𝑀 − 𝐽 ̅],                                          (10) 

The approximate gradient as proposed by the mean-shifted and J-shift is given by: 

             𝑑𝑘 =
1

𝑁𝑒−1
𝐶𝑈 ∑ (�̂�𝑗 − �̂�)(𝐽(�̂�𝑗) − 𝐽)

𝑁𝑒
𝑗=1 =

1

𝑁𝑒−1
𝐶𝑈𝐶𝑈𝑓 ,                       (11) 

where 𝐶𝑈 is the covariance matrix used to smooth the production rate and can be obtained 

by using the covariance function. In the real field, controls of the certain well are correlated 

in time. The formulation of the temporal covariance matrix and covariance function are 

illustrated in Appendix A.  

 

 

2.1.4  Steepest Ascent and Scaling of Variables 

 

Steepest ascent is a first-order optimization algorithm. To find a local maximum of 

a function using gradient ascent, a step proportional to the gradient direction (or of the 

approximate gradient) of the function at the current point is taken. The updates for gradient 

ascent are 

                                               𝑢𝑘 = 𝑢𝑘−1 + 𝑎𝑘𝑑𝑘,                                                     (11) 

where 𝑢𝑘  denotes the well control variable for 𝑘𝑡ℎ  iteration. 𝑎𝑘 is the step size at 𝑘𝑡ℎ 

iteration, 𝑑𝑘is the search direction at 𝑘𝑡ℎ iteration. The step size is modified by a simple 

https://en.wikipedia.org/w/index.php?title=First-order_method&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Local_minimum
https://en.wikipedia.org/wiki/Gradient
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backtracking algorithm and the search direction is a stochastic gradient, which is generated 

by the EnOpt method. 

The steepest ascent method is sensitive to the scaling of the problem. In production 

optimization problems, BHPs for producers and injection rates for injectors are not similar 

in magnitude. Hence this is ill-scaled problem, and the steepest ascent would have poor 

convergence. In order to improve the convergence rate, we rescale the problem: 

                                          0 ≤ �̃�𝑖 =
𝑢𝑖−𝑢𝑖

low

(𝑢
𝑖
up

−𝑢𝑖
low)

≤ 1,                                       (12) 

where the  index i indicate 𝑖𝑡ℎ well and 𝑢𝑖 represent control vector for ith well. If the 𝑖𝑡ℎ 

well is a producer, 𝑢𝑖
low and 𝑢𝑖

up
 represent maximum and minimum BHP, respectively, for 

that well. And if the 𝑖𝑡ℎ  well is an injector, 𝑢𝑖
low  and 𝑢𝑖

up
 represent maximum and 

minimum injecting rates of the well, respectively. 

The convergence criteria for the steepest ascent problem are set as if both objective 

function and control variables do not have significant changes. The formulation of the 

convergent criteria are: 

                                           
|𝐽(𝑢𝑘+1)−𝐽(𝑢𝑘)|

|𝐽(𝑢𝑘)|
≤ 10−4 ,                                                   (13) 

and 

                                              
‖𝑢𝑘+1−𝑢𝑘‖

2

max(‖𝑢𝑘‖
2

,1.0)
≤ 10−3,                                               (14) 
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2.2 Computational Results 

 

 

2.1.1 Example 1: Nominal Optimization for NFRs 

 

The first example is a two-dimension, two-phase (oil-water) homogenous NFR. 

The reservoir size is 2500ft and a grid of dimension 50 × 50 × 1 is used. The reservoir 

permeability is 10 md and porosity is 0.2. There are two smart horizontal wells drilled 

parallel to each other. One is a producer and the other is an injector. The  heel to toe 

coordinates of the production well are (125, 250) and (125, 2250) respectively. And the 

start and end points of the injection well are (2325, 250) and (2325, 2250). Each well is 

separated into 8 equal segments and each segment independently controlled by an ICV 

independently. The natural fractures are randomly distributed within the reservoirs as 

shown in Fig.2.2.1. The parameters used to generate the true fracture field are listed in 

Table 2.1. The oil price used is $80/STB, disposal water costs is $2/STB and injection 

water price is $2/STB.  

The steepest ascent algorithm using a stochastic gradient obtained from the EnOpt 

algorithm is chosen as the optimization scheme. The maximum bottom hole pressure 

(BHP) is set as the initial reservoir pressure (4000psi). Moreover, the minimum BHP is set 

at 1500 psi. As for the injection well, the maximum and minimum injection rates are set at 

500 STB/d and 0 STB/d respectively. 
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Mean Standard 

Units 
 Value Deviation 

Number of 
Fracture 

15 3   

Fracture 
1200 50 ft 

Length 

Fracture 
0 0.392 rad 

Orientation 

Fracture 
5000 200 md 

Permeability 

Fracture 
0.1 0.01 ft 

Aperture 

Fracture 
0.95 0.1   

Porosity 

 

Tab 2.1 The Basic Parameters to Generate Fracture Field 

 

Fig 2.2.1 Model Sketch and Fractures Distribution 

 

 

 

Number 
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of Ensemble 10 
Maximum 

step 
0.1 

Number of 
Well 

16 Pi 3000 

Number of 
Producer 

8 Swi 0.15 

Number 

30 k 10 Control 
Steps  

Minimum Inj 
Rate 

0 phi 0.2 

Maximum Inj 
500 Oil Price 100 

Rate 

Minimum Pro 
Pressure 

1500 
Disposals 

5 
Water Rate 

Maximum 
Pro Pressure 

3000 
Injecting 

1 
Water Rate 

Maximum 
Iteration 

Steps 
100 Inflating Rate 0.05 

  

Tab 2.2 The Basic Parameter to Set up Optimization Algorithm 

 

Fig 2.2.2 The Final Water Saturation Profile for Reference Case 
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Fig 2.2.3 The Final Water Saturation Profile for Optimal Case 

 

By comparing the final water saturation profile of the reference and optimal cases, 

it is observed that, in the optimal case, the water is more uniformly distributed in the 

optimal case than in the original case. This indicates that production using the optimal well 

controls could help to enhance sweep efficiency. Figs 2.2.4 and 2.2.5 demonstrate the 

optimal well controls of each well segment in each time step. At the end of production, the 

ICV for well segments 3 and 6 tend to close. By combining Figs 2.2.4 and 2.25 with 2.2.1, 

we could observe that the well segments tend to close where natural fractures are well 

developed. Fig2.2.4 indicates that injection well tends to inject water at the beginning with 

a large amount of water injected in well segments 1, 5 and 8. Figs 2.2.1 and 2.2.5 show that 

injecting water using an optimal well control scheme will avoid natural fractures. 
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Fig 2.2.4 The Optimal BHP Controls for Production Well Segment (EnOpt Gradient) 

 

 

Fig 2.2.5 The Optimal Injecting Control for Injection Well Segment (EnOpt Gradient) 
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Fig 2.2.6.Oil Production Rate and Water Cut for Each Production Well Segments 
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2.1.2 Example 2: Comparison of Optimization Schemes 

 

Figs 2.2.7 and 2.2.8 show optimal well controls for each well segment generated 

by the Simplex gradient.  By comparing Fig-5 and Fig-6, we can see that both the EnOpt 

and the Simplex method lead to similar results. As to the producer, optimal control suggests 

that all segments start fully open and then shut in segment 3 at the end of production. The 

Simplex method has better performance than the EnOpt method. When it comes to the 

change in NPV, compared with the EnOpt gradient, the Simplex gradient has a better 

convergence rate and higher optimal NPV. 

 

 

 

Fig2.2.7 The Optimal BHP Controls for Production Well Segment (Simplex Gradient) 
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Fig 2.2.8 The Optimal Injecting Rate Control for Injection Well Segment   

(EnOpt Gradient) 

 

  

Fig.2.2.9. The Final Water Saturation Profile (Simplex Gradient) 
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Both the EnOpt and the Simplex method can enhance the cumulative oil production 

rate by 26% compared with the reference case. The optimal scheme generated by the EnOpt 

algorithm could produce more oil than other methods generated by Simplex gradient. 

However, when it comes to waterfront management, the Simplex method has better 

performance than EnOpt (as seen in Fig-8). In the optimal case generated by the EnOpt 

method, the waterfront reaches the production well at around 2600 days after the 

production. Using the Simplex method, the water does not break through to the producer 

within the reservoir lifetime (3000 days). Compared with the reference case, the steepest 

ascent method with Simplex gradient decreases water production of the production well by 

32%. 

 

 

Fig 2.2.10 Comparison of Accumulative Oil Production Rate 
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Fig 2.2.11. Comparison of Accumulative Water Production Rate 

 

The performance of BFGS and CG with pure Simplex gradients is compared with 

smooth Simplex and EnOpt schemes. In Fig 2.2.12, it is observed that the CG algorithm 

has the best convergence rate compared to the other method; despite the algorithm is easily 

trapped in the local maximum. Because we only have the stochastic approximate gradient, 

BFGS has poor performance in both convergence rate and final optimal NPV. Compared 

with other optimization schemes comprehensively, the steepest ascent with the EnOpt 

gradient has the best performance in both convergence rate and ultimate NPV. 
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Fig 2.2.12.Comparison of Change of NPV for Different Optimization Scheme 
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CHAPTER 3 
 

CHAPTER 3: ROBUST OPTIMIZATION IN NFRS 
 

 

 

Most work on production optimization (Asheim 1988; Zakirov el al.1996; Brouwer 

and Jansen et all. 2004; Brouwer et al. 2004; Alhuthali et al.2007; Sarmar et al.2005; 

Nwaozo 2006; Sarma et al.2006; Sarma et al.2008; Jansen et al.2009; Wang et al.2009) is 

based on a single reservoir model, which may be the mean of the ensemble of reservoir 

models or any single reservoir model from the ensemble. Throughout, optimization based 

on a single reservoir model will be referred to as nominal production optimization. Because 

the reservoir model may be far from the real geology, applying the optimal controls 

obtained from a single model to the actual field may not achieve the maximum NPV. To 

reduce the risk arising from the uncertainty in the geological description, van Essen et al. 

(2009) proposed to optimize the expectation of NPV over a set of reservoir models. This 

procedure is referred to as robust optimization. Van Essen et al. (2009b) compared robust 

optimization from more than 100 geological realizations with nominal optimization using 

a channelized synthetic reservoir example. They concluded that robust optimization yields 

not only a higher expected NPV but also a significantly smaller variance in NPV than is 

obtained with nominal optimization when the optimal controls obtained from nominal 

optimization are implemented for the set of 100 realizations. 

In naturally fractured reservoirs, the spatial distribution of natural fractures is 

inherently uncertain. In practice, it is impossible to predict the exact location, length, and 

permeability of natural fractures. Robust optimization has been introduced to handle the 
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geological uncertainty that results from uncertain fracture networks. This uncertainty is 

corresponds mainly to fracture location, length, orientation and other properties (fracture 

permeability, aperture, and porosity) associated with fracture-fracture and fracture-matrix 

transmissibility. Although robust optimization is a useful method to help us handle the 

uncertainty introduced by natural fracture, it would take a significant amount of 

computational cost to get optimal well control rates for all realizations. To avoid redundant 

ensemble runs and to improve the efficiency of the robust optimization algorithm, the 

ensembles have been clustered via several proposed algorithms. By clustering ensembles 

properly, computational performance could improve 5-6 times compared with the standard 

robust optimization algorithm. 

Traditional EnOpt and improved EnOpt robust optimization algorithms have been 

introduced. Then the k-means and hierarchical clustering have been briefly introduced as 

clustering algorithms to group different ensemble models into several clusters. To group 

ensembles reasonably, three sets of features have been selected and computed as input data 

for the clustering algorithms. 

 

 

 

3.1  Robust Optimization 

 

 

3.1.1 Ensemble Optimization 

 

Robust optimization involves optimizing the expectation of the objective function 

with uncertain forward models. The objective function for robust optimization problems 

can be defined as 

𝑀𝑎𝑥{𝐸[𝑁𝑃𝑉]}, 
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                                             s.t.  𝑢𝑙𝑜𝑤 < 𝑢 < 𝑢𝑢𝑝,                                      (15) 

where 

                                          𝑀𝑎𝑥{
1

𝑁𝑚
∑ 𝑁𝑃𝑉𝑖

𝑁𝑚
𝑗=1 },                                             (16) 

the search direction is proposed as 

                                                 𝑑𝑘=𝐶𝑈𝐶𝑈𝑓 ,                                                          (17) 

where 

                               𝐶𝑢𝑓 =
1

𝑁𝑚−1
∑ (�̂�𝑗 − �̂�)(𝐽(�̂�𝑗) − 𝐽)

𝑁𝑚
𝑗=1 ,                                 (18) 

where 𝐶𝑈 is the time dependent covariance matrix for each well, which is proposed in 

Appendix A. 

The original robust ensemble optimization was introduced by Chen and Chen and 

Oliver. 

A modified formulation for EnOpt for robust optimization showed as followed: 

                 𝐶𝑢𝑓 =
1

𝑁𝑚∗𝑁𝑒
∑ ∑ (�̂�𝑖

𝑗 − 𝑢𝑗−1)(𝐽(�̂�𝑖
𝑗) − 𝐽𝑗−1)

𝑁𝑚
𝑗=1

𝑁𝑝

𝑖=1
                         (19) 

Compared with the original version of EnOpt, the modified has better convergence 

for well controls optimization problem in naturally fractured reservoirs. 

 

 

 

3.2 Robust Optimization with Clustered Model 

 

 

3.2.1 K-means Clustering 

 

The K-means method is one of the simplest unsupervised learning algorithms that 

is used to solve the well-known clustering problem. The procedure follows a simple and 

easy way to classify a given data set through a certain number of clusters (assume k 
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clusters) not are fixed a priori. The main idea is to define k centers, one for each cluster. 

These centers should be placed in a cunning way because of different locations lead to a 

different results. So, the better choice is to place them as much as possible far away from 

each other. The next step is to take each point belonging to a given data set and associate 

it to the nearest center. When no point is pending, the first step is completed, and an early 

group age is done. At this point we need to re-calculate the 𝑘 new centroids as the centers 

of the clusters resulting from the previous step. After these 𝑘 new centroids are 

computed, a new binding has to be done between the same data set points and the nearest 

new center. A loop has been generated. As a result of this iteration we may notice that the 

𝑘 centers change their location step by step until no more changes are necessary. Finally, 

this algorithm aims at minimizing an objective function known as the squared error 

function given by 

                                       𝐽(𝑉) = ∑ ∑ (||𝑥𝑖 − 𝑣𝑗||)
2

,
𝑐𝑖
𝑗=1

𝑐
𝑖=1                                               

(20) 

where, ||𝑥𝑖 − 𝑣𝑗 || is the Euclidean distance between 𝑥𝑖and 𝑣𝑗 , 𝑐𝑖 is the number of 

data points in 𝑖𝑡ℎ cluster, and c is the number of cluster centers. 

Let X ={𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛} be the set of data points and V = {𝑣1, 𝑣2, 𝑣3, … . . 𝑣𝑐} be 

the set of centers. 

The algorithmic steps for the k-means clustering are: 

1) Randomly select c cluster centers. 

2) Calculate the distance between each data point and the cluster centers. 

3) Assign the data point to the cluster center whose distance from the cluster center 

is the minimum of all the cluster centers. 
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4) Recalculate the new cluster center 

                                                                                      𝑣𝑖 =
1

𝑐𝑖
∑ 𝑥𝑖,

𝑐𝑖
𝑗=1                                                     (21) 

where, ci  represents the number of data points in ith cluster. 

5) Recalculate the distance between each data point and the newly obtained cluster 

centers. 

6) If no data point was reassigned then stop, otherwise repeat from step 3). 

 

 

3.2.2 Hierarchical Clustering Method 

 

In data mining and statistics, hierarchical clustering (also called hierarchical cluster 

analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. 

To decide which groups should be combined (agglomerative step), or where a group 

should be split (divisive step), a measure of dissimilarity between sets of observations is 

required. The metric has been designated as a measure of distance between pairs of 

observation. Moreover, the linkage criterion determines the distance between sets of 

observation as a function of the pairwise distance between observations. In most methods 

of hierarchical clustering, reliable clustering is achieved by the use of an appropriate metric 

(a measure of distance between pairs of observations), and a linkage criterion that specifies 

the dissimilarity of sets as a function of the pairwise distances of the observations in the 

sets. 

In this work, the Euclidean distance (two normal) has been chosen as the clustering 

metrics to measure the distance between observations.  

https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Hierarchy
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Distance
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In this work, the average linkage clustering criterion has been selected. Given two 

observation 𝑎𝜖𝐴  and 𝑏𝜖𝐵  is the sets which cardinality |𝐴|  and |𝐵|  respectively, the 

criterion is: 

                                             
1

|𝐴||𝐵|
∑ ∑ 𝑑(𝑎, 𝑏)𝑏𝜖𝐵𝑎𝜖𝐴                                              (22) 

 

3.2.3 Selection of Features and Work Flow for Clustering Optimization 

 

The most intuitive way to cluster the fracture models is to group different fracture 

models via their resulting NPV. The workflow for NPV clustering is:  

1) Simulate whole ensembles with initial wells controls. 

2) Rank the NPV for each ensemble. 

3) Select the ensembles correspondent with 𝑃10, 𝑃20, 𝑃30 … 𝑃90 in rank NPV. 

4) Perform robust optimization with selected models. 

The workflow to cluster fracture models based on model parameters is: 

1) Select and compute model parameters based experience. 

2) Cluster the ensemble via k-means or the hierarchical method into n clusters. 

3) Select one model from each group.  

4) Run robust optimization with selected models as the ensemble. 

To describe the features of each fracture model, three model parameters, such as 

total conductivity, total fracture storability, and weighted fracture orientation have been 

defined. The formulations to compute model parameters for each fracture model are 

showed as follows: 

                                                     𝑆𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜙𝑖ℎ𝑖𝑙𝑖𝐴𝑖
𝑛𝑓

𝑖=0
,                                              (23) 

                                                    𝐶𝑜𝑛𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑘𝑖𝐴𝑖𝑙𝑖
𝑛𝑓

𝑖=0
,                                              (24) 

and 



29 

                                                 𝑂𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑ 𝜑𝑖𝑘𝑖𝐴𝑖𝑙𝑖
𝑛𝑓

𝑖=0
.                                            (25) 

 

Clustering different ensembles via response, such as accumulative oil, water 

production rate and the breakthrough time corresponding to each well segment and NPV 

with respect to each model is reliable ways to group model. This strategy is more reliable 

when the geological uncertainty such as uncertainty in permeability and porosity field has 

been introduced in each ensemble model.  

1) Simulate whole ensemble and record response for each model. 

2) Clustering whole ensemble via the hierarchical clustering and responses of each 

model. 

3) Select one model from each cluster. 

4) Performance robust optimization with selected ensembles. 

 

 

 

3.3 Computational Results 

 

In this section, two examples have been selected to illustrate the performance of 

our clustered robust optimization framework. In Example 1, smart wells control are 

optimized for the NFR with homogeneous matrix properties. The results of clustered robust 

optimization are compared with standard robust optimization without clustering. In 

Example 2, geological uncertainty is introduced into the reservoir model and the smart well 

controls are optimized for cases with fracture distribution uncertainty and with geological 

uncertainty. In all the examples, the objective is to maximize the NPV by optimizing the 

BHP for the production well and the injection rates for the injection well.  

The basic reservoir model is a two-dimension, two-phase (oil-water) homogenous 

NFR. The reservoir size is 2500ft by 2500ft and a simulation grid of dimension 50x50x1 
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is used. The permeability and porosity fields are homogenous with values 10md and 0.2 

respectively. Two smart horizontal wells are drilled parallel to each other. One is a producer 

and the other is an injector. The heel and toe coordinates of the production well are (125, 

250) and (125, 2250) respectively. The location of the injection well is defined by the 

coordinates (2325, 250) and (2325, 2250) corresponding to the start and end points. Each 

well is divided into 8 equal segments and each segment is independently controlled by an 

ICV. 

Upper and lower bounds have been applied to constrain the BHP for producers and 

injection rates for injectors. The maximum BHP is 4000 psi, which is equal to the initial 

reservoir pressure. The minimum BHP is set to 1000 psi for the producer. The maximum 

and minimum injection rates are set as 500 and 0 STB per day respectively. The initial 

production pressure and injection rate have been set at 2000 psi and 100 STB/d. In the 

robust optimization case, the oil price has been set as $80/STB. The injection water and 

disposal water price are $3/STB and $5/STB. 
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Mean 
 Value 

Standard 
 Deviation 

Units 

Number of 
Fracture 

20 3   

Fracture 
800 50 ft 

Length 

Fracture 
0 0.393 rad 

Orientation 

Fracture 
2000 200 md 

Permeability 

Fracture 
0.15 0.02 ft 

Aperture 

Fracture 
0.95 0   

Porosity 

Number  
of Model 

200 0   

 

Tab 3.1 The Basic Parameters to Generate Fracture Fields 
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3.3.1 Robust Optimization with Homogenous NFRs 

 

In order to compare the performance of the robust optimization algorithm with and 

without different clustering techniques, four numerical scenarios have been designed. In 

the first scenario, 100 natural fracture models have been generated to represent the 

underground uncertainty. The standard robust optimization using full ensembles is 

performed. In the second scenario, the full ensemble is run once and the 𝑃10, 𝑃20, 𝑃30 … 𝑃90 

are selected based on rank their of NPV. The robust optimization algorithm is performed 

using the selected models. In the third scenario, the full ensembles are clustered based on 

the model parameters defined in section 3.2.3, such as total fracture conductive, total 

fracture storability and weighted fracture direction. The clustering results showed in Figure 

B.1. In Appendix B Fig B.1, the numbers on the x-axis represent the label of the model. 

The length on the y-axis represents the normalized distance between two different models 

or clusters. By setting up the normalized threshold distance as 0.2, we could group whole 

ensembles into 15 clusters.  

  



33 

 

 

 

Fig3.3.1 The Optimal BHP Controls for Production Well Segment (Full Ensemble) 

 

 
 

Fig 3.3.2 The Optimal Injecting Rate Control for Injection Well Segment (Full Ensemble) 
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Fig3.3.3 The Optimal BHP Controls for Production Well Segment (Selected NPV) 

 

 

 
 

Fig 3.3.4 The Optimal Injecting Rate Control for Injection Well Segment (Selected NPV) 
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Fig3.3.5 The Optimal BHP Controls for Production Well Segment (Model Clustering) 

 

 
 

Fig 3.3.6 The Optimal Injecting Rate Control for Injection Segment (Model Clustering) 
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Fig3.3.7 The Optimal BHP Controls for Production Well Segment (Response Clustering) 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

Fig 3.3.8 The Optimal Injecting Control for Injection Segment (Response Clustering) 
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Fig 3.3.9 Initial NPV of Full Ensemble 

 
Fig.3.3.10 Final NPV of Full Ensemble  

 

Cases Std Mean 
Max 
NPV 

Min NPV 
Num 

of Sim 

Full Ensemble 1148900 63281160 67838000 60969200 2500 

Selected Ensemble 1125700 62622471 67030700 60388000 340 

Clustered by 
Model 

1064200 62731600 66486700 60532100 430 

Clustered by 
Response 

1081300 62978000 67366400 60753100 400 

 

Tab 3.2 Comparison of Different Clustering Schems 
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In Figs 3.3.1, 3.3.3 and 3.3.5, it can be observed that the optimal well controls 

always lead the operator to restrict BHP and water injection at the beginning of production. 

However, when comparing with the initial reservoir pressure (4000psi), there are only 

minor restrictions on BHP at the beginning of production. When it comes to injectors, we 

could observe that the injection wells always tend to inject water at the beginning of the 

production period. Injecting water at the beginning of production not only improves the 

efficiency of the water flood but also prevents early breakthrough of water. By comparing 

different well controls generated by different clustering robust optimization algorithms, it 

easy to recognize that there is some similarity between the resulting optimal well controls. 

For example, all optimal controls tend to restrict water injection in segments 3 and 4. 

Moreover, all optimal well controls lead us to inject a significant amount of water at well 

segments 2 and 5. By comparing the final CDF of NPV for the whole ensembles, we could 

compare the performance of different clustering robust optimization methods. From the 

Fig 3.3.10, it easy to recognize that by using the full ensemble robust optimization, a better 

NPV is obtained than by any other clustering optimization methods. However, the full 

ensemble robust optimization could be computationally inefficient takes a number of 

simulations to reach the optimal well controls. When it comes to the proposed clustering 

algorithms, the response clustered robust optimization has the highest expected NPV. 

Additionally, the standard deviation of NPV for the response clustered optimal well 

controls is also smaller than for other methods, except the model parameters clustered 

method. From the Table3.2, it could be observed that the standard optimization algorithm 

takes 2000 of simulation runs to reach the optimal well controls; however, the response 

clustering robust optimization algorithm only takes 400 simulations to find the optimal 



39 

well controls. By using the response clustering method, we could improve the efficiency 

of robust optimization 5-6 times and without sacrificing expected NPV for whole 

ensembles. Generally speaking, the response clustering method has the best performance 

in this case.  

 

 

3.3.2 Robust Optimization with Geological Uncertainty 

 

In this example, besides the uncertainty introduced by the random fracture 

distribution, the geological uncertainty in permeability and porosity fields is considerate. 

Because of geological uncertainty, it would be unreliable if we only group the fracture 

models by the fracture model parameters. In this section, only three different robust 

optimization algorithms have been applied, which are the standard robust optimization, the 

NPV selected optimization and the responses clustered optimization. 

In comparison with the previous example, we leave all parameters unchanged 

except that the matrix permeability and porosity fields. Moreover, because there is more 

uncertainty that is introduced into the system, the number of the ensemble is increased to 

200 instead of 100. The permeability fields are assumed to obey log-normal distribution 

whereas the porosity fields obey normal distribution. The 200 realizations of matrix 

permeability and porosity fields are generated using a spatial covariance matrix and 

Gaussian random noise. The formulation of the covariance matrix is illustrated in Appendix 

A. The mean values of log permeability and porosity are set as 2.3 md and 0.2 respectively, 

and the standard deviations for log-permeability fields is 0.3. The standard deviation for 

matrix porosity is 0.03. The maximum and minimum correlation lengths for the covariance 

matrix are 1500ft and 300ft. The cross-correlation coefficient between permeability and 
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porosity is 0.5. The orientation angle for the direction of maximum correlation is 
𝜋

4
 . To 

demonstrate the permeability and porosity distribution of the ensemble, 3 realizations have 

been selected and appear in Fig 3.3.11-3.3.13. From these figures, it easy to recognize that 

there are some high permeability zone that are distributed randomly along the 
𝜋

4
 direction. 

 

Fig 3.3.11 Permeability and Porosity Distribution for 15th Model 

 

Fig 3.3.12 Permeability and Porosity Distribution for 50th Model 

 

Fig 3.3.12 Permeability and Porosity Distribution for 150th Model 
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Fig 3.3.13 The Optimal BHP Controls for Production Well Segment (Full Ensemble) 

 

 
 

Fig3.3.14 The Optimal Injecting Controls for Injection Well Segment (Full Ensemble) 
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Fig 3.3.15 The Optimal BHP Controls for Production Well Segment (NPV Selected) 

 

 
 

Fig 3.3.16 The Optimal Injecting Controls for Injection Well Segment (NPV Selected) 
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Fig 3.3.17 The Optimal BHP Controls for Production Segment (Response Clustering) 

 

 
 

Fig 3.3.18 Optimal Injecting Controls for Injection Well Segment (Response Clustering) 
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Fig 3.3.19 Initial NPV of Full Ensemble with Geological Uncertainty 

 

 
 

Fig.3.3.20 Final NPV of Full Ensemble with Geological Uncertainty 

 

By comparing the optimal well controls generated by the full ensemble and the 

response clustered ensemble, several similarities between the optimal well controls are 

observed. In Figs 3.3.13 and 3.3.17, the 6th production segment continuous restricts 

production by controlling the BHP during entire production life. As for injectors, it is 

observed that both schemes tend to inject water at the beginning of the production. Injecting 
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water at the beginning of production can not only improve the efficiency of flood but also 

prevent the breakthrough of water front. Moreover, both control schemes tend to inject 

water at segments 2 and 5. In Fig 3.3.20, the CDF of NPV using the various clustering 

methods show that by using the standard ensemble robust optimization, we could get better 

NPV than the NPV selected optimization algorithm. However, the full ensemble robust 

optimization could be computationally inefficient and it takes an amount of simulations to 

reach the optimal well controls. The standard robust optimization with 200 ensembles takes 

5400 simulations to reach the optimal NPV and the NPV selected optimization only needs 

850 simulations to converge. Although NPV selected optimization has a good performance 

on efficiency, the final expected NPV for full ensemble is much smaller than other 

methods, which means the optimal control for selected model might not be the optimal 

control for full ensemble. As to the response clustering optimization algorithm, it only takes 

650 simulation run to reach optimal expected NPV. Hence from Fig 3.3.20, it is easily 

concluded that the response clustering optimization algorithm could improve the efficiency 

of the robust optimization significantly without sacrificing the final expected NPV for full 

ensemble.  
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CHAPTER 4 
 

CHAPTER 4: DATA ASSIMILATION AND HISTORY MATCHING 
 

Continuum fracture models, such as the Dual Porosity (DP) and the Dual 

Permeability and Dual Porosity (DP-DK) models have the advantage over DFM in that the 

fracture location and properties can be altered by changing the fracture cell permeability, 

shape factor, and pore volume. The final fracture permeability, shape factor, and pore 

volume fields represent a probability that fractures will appear. For example, a certain 

region with high permeability and pore volume might indicate there is a high probability 

for this region to have natural fractures. 

In NFRs, the observed data is generated by applying observation error on true 

production data, and the true production data is generated by a homogenous field with 

randomly generated EDFM model. The prior ensemble models are generated by applying 

Gaussian noise on the spatial covariance matrix. The details of the covariance matrix are 

illustrated in Appendix A. 

 

 

 

4.1 Models and Methods 

 

 

4.1.1 Dual Permeability Dual Porosity Model 

 

The DP model proposed by Warren and Root (1963) is a widely used method to 

simulate fluid flow in the naturally fractured reservoir. Although DP models are limited in 

their ability to represent complex fracture geometry, however, when only we have a 

probability distribution of a naturally fractured field, the DP models would have a better 
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representation of the fracture field via changing the value of shape factor and fracture 

permeability.  The connection list for DP model is showed in Fig 4.1.1. From Fig 4.1.1, we 

could observe that in the DP model, there is no direct connection between matrices and 

each matrix cell had been connected with each other by a set of fracture cells. The dual 

porosity dual permeability (DP-DK) is an enhancement to the standard DP model. In this 

model, communication between the matrixes (the inter-granular void space which is also 

referred to as the primary porosity) is not assumed to be negligible. The inter-block 

communication for the DP-DK model shown in Fig 4.1.2. 

Oil in the fracture is conserved: 

Δ𝑇𝑜𝑓
𝑥 (Δ𝑝𝑜𝑓

𝑛+1 − 𝑟𝑜𝑓
𝑥 Δ𝐷) + Δ𝑇𝑜𝑚𝑓

𝑥 (𝑝𝑜𝑓
𝑛+1 − 𝑝𝑜𝑚

𝑛+1) −
𝑉𝑏

Δ𝑡
[(

𝜙𝑆𝑜

𝐵𝑜
)

𝑓

𝑛+1

− (
𝜙𝑆𝑜

𝐵𝑜
)

𝑓

𝑛

] = 0        (26) 

Water in the fracture is conserved: 

Δ𝑇𝑤𝑓
𝑥 (Δ𝑝𝑤𝑓

𝑛+1 − 𝑟𝑤𝑓
𝑥 Δ𝐷) + Δ𝑇𝑤𝑚𝑓

𝑥 (𝑝𝑤𝑓
𝑛+1 − 𝑝𝑤𝑚

𝑛+1) −
𝑉𝑏

Δ𝑡
[(

𝜙𝑆𝑤

𝐵𝑤
)

𝑓

𝑛+1

− (
𝜙𝑆𝑤

𝐵𝑓
)

𝑚

𝑛

] = 0     (27) 

                                                          𝑇𝑜𝑓
𝑖+

1
2

𝑥 = [
Δ𝑌ΔZ

ΔX
𝑘𝑒]

𝑖+
1

2

∙ [
𝑘𝑟𝑜

𝜇𝑜𝐵𝑜
]

𝑓𝑘

𝑥

                              (28) 

                                                                𝑘𝑒 = 𝑘𝑓 ∙
𝑉𝑓𝑝

𝑉𝑏
                                                      (29) 

 

Fig 4.1.1 Schematic Diagram of Connectivity for the Standard DP Model 
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Fig 4.1.2 Schematic Diagram of Connectivity for the Standard DPDK Model 

 

 

4.1.2 Ensemble Smoother with Multiple Data Assimilation  

 

Ensemble methods use an ensemble of model realizations to represent the 

uncertainty in the model state and parameters. However, unlike oceanic and atmospheric 

models that present chaotic and unstable dynamics (Evensen, 2007, Chapter 6) reservoir 

simulation models are typically a stable function of the rock property field. If we make the 

assumption that there is no model error for the simulator, we need only estimate model 

parameters when applying the ensemble smoother (ES). The formulation of the ES method 

showed is as: 

                        m𝑗
𝑎 = m𝑗

𝑓
+ 𝐶𝑀𝐷

𝑓
(𝐶𝐷𝐷

𝑓
+ 𝐶𝐷)

−1
(𝑑𝑢𝑐,𝑗

𝑓
− 𝑑𝑗

𝑓
),                         (30) 

for 𝑗 = 1,2, … , 𝑁𝑒, where 𝑁𝑒 denoting the number of ensemble members; 𝐶𝑀𝐷
𝑓

 is the cross-

covariance matrix between the prior vector of model parameters, m𝑗
𝑓
,and the vector of 

realization data 𝑑𝑓, 𝐶𝐷𝐷
𝑓

 is the 𝑁𝑑 × 𝑁𝑑 auto-covariance matrix of predicted data; and 𝐶𝐷is 

variance of predicted data, which typically is a diagonal matrix. 

In Emerick and Reynolds (2012), it was shown that the single and multiple data 

assimilations for the linear Gaussian case. As to our reservoir simulation, which has high 

nonlinearity due to relative permeability capillary pressure etc., this equivalence does not 

hold. Inspired by Gaussian-Newton iteration, multiple data assimilation (MDA) can be 
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viewed as an iterative ensemble smoother; we perform multiple smaller corrections in the 

ensemble to overcome nonlinearity of the problem. The essential steps for ES-MDA is 

shown as: 

1. Choose the number of data assimilation 𝑁𝑎, and the coefficient 𝛼𝑖 for i=1… 𝑁𝑎. 

2. For i=1 to 𝑁𝑎 

       (a) Run the ensemble from time zero. 

       (b) For each ensemble member, perturb the observation vector using 

                       d𝑢𝑐 = d𝑜𝑏 + √𝛼𝑖  𝐶𝐷
1/2𝑧𝑑, where 𝑧𝑑~𝑁(0, 𝐼𝑁𝑑

). 

       (c) Update the ensemble using Eq. (13) with 𝐶𝐷 replaced by 𝛼𝑖𝐶𝐷. 

The more details of the ES-MDA algorithm are well summarized in Emerick and 

Reynolds (2012). 

 

 

 

4.2 Computational Results 

 

 

4.2.1 Example 1.History Matching for NFRs 

 

In this example, the history matching work flow for NFRs has been introduced. The 

size of the model and basic parameters are set same as the examples in Chapter 4. The 

sketch of fracture distribution for the true model is shown in Fig 4.2.1. The other parameters 

of the true fracture model are shown in Tab 4.2.2. Then the DPDK model has been used as 

the forward model to assimilate the production data generated by the true model. 

Setting up initial fracture fields in DPDK is also a critical step in the data 

assimilation workflow. The quality of prior fracture fields can deeply affect the result of 

the history matching. To set up prior model properly, the mean value of log fracture 
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permeability has been set as 7, mean value of fracture cell shape factor is 2665 and mean 

value of fracture pore is 20. The maximum and minimum correlation length for covariance 

matrix are 1000ft and 500ft. The cross-correlation coefficient between permeability and 

porosity is 0.5. The orientation angle for the direction of maximum correlation is 0. Figs 

4.2.3 and 4.2.4 are random selected prior fields before assimilating the observed data. We 

could observe there is large variety in oil water production rates and water breakthrough 

times, which means there large amount of contained in prior models. As nonlinearity of 

this problem, the ensemble size is set as 200 and the assimilation number is 7. As we 

known, the harmonic summation of inflation rates in each assimilation should equal to 1; 

the inflation factors for each assimilation shown in Table.4.2.1.  

 

Fig 4. 2.1 Fracture Distribution of True Model 

 

Number of  
Assimilation 1 2 3 4 5 6 7 

Inflation 
Rate 3000 1000 500 200 6.862 3 2 

 

Fig 4.2.1 The Inflation Rate for Each Assimilation 
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Mean 
 Value 

Standard 
 Deviation 

Units 

Number of 
Fracture 

15 3   

Fracture 
1200 50 ft 

Length 

Fracture 
0 0.392699075 rad 

Orientation 

Fracture 
2000 200 md 

Permeability 

Fracture 
0.1 0.02 ft 

Aperture 

Fracture 
0.95 0.01   

Porosity 

Number  
of Model 

200 0   

 

Fig 4.2.2 Basic Parameters to Generate True Fracture Field 
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Fig 4.2.3 The 140th Initial DPDK Field 

 

 

 

Fig 4.2.4 The 199th Initial DPDK Field 
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Fig 4.2.5 The Oil Production Rate of 200 Ensemble before Assimilating Data 

 

Fig 4.2.6 The Water Production Rate of 200 Ensemble before Assimilating Data 
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In Figs 4.2.9 and 4.2.10, we could observe that both oil and water production rates 

for each well segment matched with the observed data. There is little bit mismatch for 

water breakthrough time for well segments 3, which is caused by inconsistency between 

DFM and continuum fracture model. The constrained DPDK fields shown in Figs 4.2.7 

and 4.2.8. By comparing constrained DPDK fields (Fig 4.2.7 and 4.2.8) with the true 

fracture field (Fig 4.2.1), there are some easily observed agreements between these fields. 

For example, the upper part and lower left part of permeability field and pore volume field 

have distinct large value than other parts of those fields. In Fig 4.2.1, we also observe that 

the upper part and the lower left part of the field have larger fracture intensity than other 

part of the field .Thus this example illustrates that it would be a reasonable way to use data 

generated by DFN to constrain the DPDK model to reduce the uncertainty of the NFRs 

system. 
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Fig 4.2.7 The 140th DPDK Field after Assimilating Data 

 

 

 

 

Fig 4.2.8 The 199th DPDK Field after Assimilating Data 
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Fig 4.2.9 The Oil Production Rate of 200 Ensemble after Assimilating Data 

 

 

Fig 4.2.10 The Water Production Rate of 200 Ensemble after Assimilating Data  
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CHAPTER 5 
 

CHAPTER 5: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
 

 

 

5.1 Summary and Conclusions 

 

Production optimization for naturally fractured reservoirs is difficult because the 

randomly distributed natural fractures introduce nonlinearity and uncertainty into the 

optimization system. Optimal well controls should increase the oil production rate and 

meanwhile decrease the water production rate. 

In Chapter 2, the basic EDFM was used to simulate fluid flow in natural fractures 

and the objective function for optimization algorithm has been defined. The steepest ascent 

with scaled variables has also been applied to maximize the objective function. It is 

observed that developing NFRs with optimal production rate could increase oil production 

rate and meanwhile restrict water production rate. The performance of the Simplex gradient 

with different optimization schemes has been compared with the EnOpt gradient with the 

steepest ascent optimization scheme. The results showed that the CG algorithm has the best 

convergent rate compared with other method for the cases presented but would be easier 

to be trapped into local maximum. 

In Chapter 3, a clustering-based robust optimization procedure is developed. The 

optimization procedure consists of robust optimization and clustering of different models 

in two steps. Three kinds of different features, such as selected NPV, model parameters 

clustering and model responses clustering, have been chosen to cluster the numerical 

models. The k-means method and the hierarchical method are also introduced as clustering 
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methods to group the models. The computational results show that although the robust 

optimization has the best performance in expected NPV aspect than other clustering 

methods, it would be computationally expensive. The response clustering optimization not 

only has a good representation of ensemble uncertainty but also can improve the efficiency 

of robust optimization significantly. 

Chapter 4 demonstrates a workflow to history match NFRs. In this workflow, the 

DPDK model has been used as the forward model to match the observation data, which is 

generated by fracture fields with EDFM. From the computational results, we could observe 

that there are good matches for oil production rate and water production rate. Moreover, 

the regions of large fracture intensity in the true model, tend to have large pore volume and 

fracture permeability in constrained DPDK field. The result shows there is a good 

agreement in fracture distribution in both EDFM and DPDK models. 

5.2 Future Work 

 

The response clustering method is, we believe, quite promising though several 

aspects require additional investigation. These include the following: 

1. Although the total fracture conductivity, storability and weight fracture 

orientation have been selected as features to cluster the fracture models, the 

results shows that these model parameters may not be substantial to represent 

whole features for each fracture model. Hence model parameters clustering 

robust optimization has poor result compared with another methods. A more 

reasonable way to extract features from the model it to divide the model into 

several sub regions and extract features from each sub region. With more 
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features extracted, the model parameters clustering method should have better 

performance. 

2. Besides to maximize the NPV, the other important objective for operators to 

design optimal well controls is to minimize the uncertainty in procedure of field 

development. Thus multi-objective optimization framework is proposed to 

maximum the expected NPV and minimize the risk of field development. 

However, the multi-objective optimization workflow would increase the 

number of required simulation runs significantly. Hence the multi-objective 

optimization with responses clustering should be investigated to improve the 

efficiency of the multi-objective optimization algorithm. 

3. Selecting appropriate inflation factors is a heuristic but critical step in the ES-

MDA. On the one hand, the appropriately selected inflation factors could 

improve the quality of data matching and final results. On the anther hand, bad 

inflation rates could cause ensemble collapse and generate too many extreme 

values of fracture fields. So developing an adaptive ES-MDA algorithm to 

select inflation rates automatically should also be an important work for history 

matching in NFRs. 
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APPENDIX A 
 

SPATIAL AND TEMPORAL COVARIANCE MATRIX 

 

 

It is a common assumption to assume that the log permeability and the porosity 

fields obey the Gaussian distribution in the geostatistic scope. To represent spatial and 

temporal correlation, several different covariance models have been introduced. The 

following covariance models are most commonly used for modeling random Earth 

processes: the spherical model for which: 

                       𝐶(ℎ) = 𝛿2 {
1 −

3ℎ

2𝑎
+

ℎ3

2𝑎2          𝑓𝑜𝑟 0 ≤ ℎ ≤ 𝑎

  0                          𝑓𝑜𝑟 ℎ > 𝑎
                                        A.1 

and the exponential family of covariance function, 

                                  𝐶(ℎ) = 𝛿2 exp (−3 (
|ℎ|

𝑎
)).                                                             A.2 

For both formulas, h is the distance between two spatial locations and can be positive or 

negative. 𝑎 is the correlation range. 𝛿 is the standard deviation of certain variables. 

In cell-centered reservoir simulation models, the reservoir volume is discretized, 

and the cells are indexed two different ways: the i, j, k index refers to the row, column, and 

layer, while 𝑚 = 𝑖 + 𝑁𝑖(𝑗 − 1) + 𝑁𝑖𝑁𝑗(𝑘 − 1) indexes the grids with a single variable that 

takes values from 1 to N grid. 𝑁𝑖 is the number of gridblocks in a row, and 𝑁𝑗  is the number 

of gridblocks in a column of the model. The following equation illustrates the process of 

vectorizing a two-dimensional 10 × 10 array into a one-dimensional 100 element vector. 
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                                          [

𝑍1,1 ⋯ 𝑍1,10

⋮ ⋱ ⋮
𝑍10,1 ⋯ 𝑍10,10

] → [

𝑍1 ⋯ 𝑍10

⋮ ⋱ ⋮
𝑍91 ⋯ 𝑍100

]                                                   A.3 

 

Denote the expectation of the random property at each gridblock in this 100 cell 

model as 𝑀 = [𝑚1, 𝑚2, 𝑚3, … , 𝑚100]. The covariance of the properties on the grid is the 

expectation of production of (𝑍 − 𝑀) and its transpose(𝑍 − 𝑀)𝑇: 

Cov(z, z) = 𝐸[(𝑍 − 𝑀)𝑇(𝑍 − 𝑀)] =

         [
𝐸[(𝑍1 − 𝑚1)(𝑍1 − 𝑚1)] ⋯ 𝐸[(𝑍1 − 𝑚1)(𝑍100 − 𝑚100)]

⋮ ⋱ ⋮
𝐸[(𝑍100 − 𝑚100)(𝑍1 − 𝑚1)] ⋯ 𝐸[(𝑍100 − 𝑚100)(𝑍100 − 𝑚100)]

].                            A.4 

Because the covariance of two random variables 𝑍𝑖  and 𝑍𝑗  is 𝑐𝑜𝑣(𝑍𝑖, 𝑍𝑗) = 𝐸[(𝑍𝑖 −

𝑚𝑖)
𝑇(𝑍𝑗 − 𝑀𝑗)] , the A.4 is equivalent to: 

                                    cov(Z, Z) = [
𝑐𝑜𝑣(𝑍1, 𝑍1) ⋯ 𝑐𝑜𝑣(𝑍1, 𝑍100)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑍100, 𝑍1) ⋯ 𝑐𝑜𝑣(𝑍100, 𝑍100)

].                                        A.5 

The spatial covariance matrix is always symmetric. With the assumption of stationarity the 

spatial covariance is only a function of lag distance. If each gridblock is 1 unit by 1 unit 

square and the value of the random variables are sampled at the gridblock centers, the 

covariance can be written in term of the distance between grid centers: 

                                            cov(Z, Z) = [
𝑐𝑜𝑣(0) ⋯ 𝑐𝑜𝑣(9√2)

⋮ ⋱ ⋮
𝑐𝑜𝑣(9√2) ⋯ 𝑐𝑜𝑣(0)

].                                                A.6 

The time-dependent covariance matrix for well controls shown as follows: 

                                          covwells = [

𝑐𝑜𝑣𝑤𝑒𝑙𝑙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑐𝑜𝑣𝑤𝑒𝑙𝑙𝑛

]                                                  A.7 

                                         𝑐𝑜𝑣𝑤𝑒𝑙𝑙𝑖 = [
𝑐𝑜𝑣𝑖(𝑇1, 𝑇1) ⋯ 𝑐𝑜𝑣𝑖(𝑇1, 𝑇𝑥)

⋮ ⋱ ⋮
𝑐𝑜𝑣𝑖(𝑇1, 𝑇𝑥) ⋯ 𝑐𝑜𝑣𝑖(𝑇𝑥 , 𝑇𝑥)

]                                          A.8 
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             𝑐𝑜𝑣𝑖(𝑇𝑖, 𝑇𝑗) = 𝛿2
{

1 −
3(𝑇𝑖−𝑇𝑗)

2𝑇
+

(𝑇𝑖−𝑇𝑗)3

2𝑇2          𝑓𝑜𝑟 0 ≤ 𝑇𝑖 − 𝑇𝑗 ≤ 𝑇

           0                         𝑓𝑜𝑟 𝑇𝑖 − 𝑇𝑗 > 𝑇
 .                          A.9 
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APPENDIX B 
 

CLUSTERING RESULT 

 

 
 


