
MODERN ADVANCES IN SOFTWARE AND SOLUTION

ALGORITHMS FOR RESERVOIR SIMULATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ENERGY

RESOURCES ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Rami M. Younis

August 2011

Abstract

As conventional hydrocarbon resources dwindle, and environmentally-driven markets

start to form and mature, investments are expected to shift into the development of

novel emerging subsurface process technologies. While these processes are charac-

terized by a high commercial potential, they are also typically associated with high

technical risk. The time-to-market along comparable development pipelines, such as

for Enhanced Oil Recovery (EOR) methods in the Oil and Gas sector, is on the order

of tens of years. It is anticipated that in the near future, there will be much value in

developing simulation tools that can shorten time-to-market cycles, making invest-

ment shifts more attractive. There are two forces however that may debilitate us

from delivering simulation as a scientific discovery tool. The first force is the growing

nonlinearity of the problem base. The second force is the flip-side of a double edged

sword; a rapidly evolving computer architecture scene.

The first part of this work concerns the formulation and linearization of nonlinear

simultaneous equations; the archetypal inflexible component of all large scale simu-

lators. The proposed solution is an algorithmic framework and library of data-types

called the Automatically Differentiable Expression Templates Library (ADETL). The

ADETL provides generic representations of variables and discretized expressions on

a simulation grid, and the data-types provide algorithms employed behind the scenes

to automatically compute the sparse analytical Jacobian. Using the library, large-

scale simulators can be developed rapidly by simply writing the residual equations,

and without any hand differentiation, hand crafted performance tuning loops, or any

other low-level constructs. A key challenge that is addressed is in enabling this level

of abstraction and programming ease while making it easy to develop code that runs

iv

fast. Faster than any of several existing automatic differentiation packages, faster

than any purely Object Oriented implementation, and at least in the order of the

execution speed of code delivered by a development team with hand-optimized resid-

uals, analytical derivatives, and Jacobian assembly routines. A second challenge is

in providing a generic multi-layered software framework that incorporates plug-in

low-level constructs tuned to emerging architectures. The inception of the ADETL

spurred an effort to develop the new generation AD-GPRS simulator, which we use

to demonstrate the powers of the ADETL. We conclude with a thought towards a

future where simulators can write themselves.

The second part of this work develops nonlinear methods that can exploit the

nature of the underlying physics to deal with the current and upcoming challenges

in physical nonlinearity. The Fully Implicit Method offers unconditional stability

of the discrete approximations. This stability comes at the expense of transferring

the inherent physical stiffness onto the coupled nonlinear residual equations that are

solved at each timestep. Current reservoir simulators apply safe-guarded variants

of Newton’s method that can neither guarantee convergence, nor provide estimates

of the relation between convergence rate and timestep size. In practice, timestep

chops become necessary, and they are guided heuristically. With growing complex-

ity, convergence difficulties can lead to substantial losses in computational effort and

prohibitively small timesteps. We establish an alternate class of nonlinear iteration

that converges and that associates a timestep to each iteration. Moreover, the linear

solution process within each iteration is performed locally. Several challenging ex-

amples are presented, and the results demonstrate the robustness and computational

efficiency of the proposed class of methods. We conclude with thoughts to unify

timestepping and iterative nonlinear methods.

v

Acknowledgements

It has been an interesting journey. I am fortunate to have had the company of

many who have challenged and supported me. I would like to thank Khalid Aziz

for taking me in and for accommodating my sometimes rogue ways. I would also

like to thank Hamdi Tchelepi for reminding me to pause and appreciate intermediate

milestones before ”turning round more new corners”. I would also like to thank Juan

Alonso for reading this dissertation and providing valuable feedback. I have had the

opportunity to learn from exceptional classroom teachers; I am especially indebted to

Julie Levandosky, Doron Levy, Gene Golub, and Lou Durlofsky. Your classes were not

easy and they were always fun. I would also like to thank the staff at the Center for

Teaching and Learning for recruiting me as a Teaching Consultant during my studies.

The Department of Energy Resources Engineering (known as Petroleum Engineering

at the time I joined) is a very special one at the university primarily because of

its administrative leadership and citizens. I would like to thank Roland Horne who

served as Department Chair throughout most of the duration of my studies. I would

also like to thank my colleagues for making every day (and night) at the office feel

like a walk in the park; Saman Aryana, Marc Hesse, Shalini Krishnamurthy, Morten

R. Kristensen, Felix Kwok, and Jonas Nilson it would not have been fun without

you. I am indebted to Sylvianne Dufour and to Dr. B. for helping learn some of

life’s hardest lessons. I would also like to thank my girlfriend Stephanie E. Holm

for putting up with my nonlinear humor. My thanks go to my parents, Hiyam and

Mustafa Younis, for guiding me and for supporting me unconditionally at the times

I needed it most. This work was prepared with financial support from the Stanford

University Petroleum Research Institute-B (SUPRI-B) Industrial Affiliates Program.

vi

Contents

Abstract iv

Acknowledgements vi

I The Automatically Differentiable Expression Templates

Library 1

1 Introduction 2

1.1 Modern Simulation Software . 4

1.1.1 Simulation Software Architectures 4

1.1.2 Programming Abstraction Paradigms 13

1.1.3 The Software Goals . 17

1.2 Formulation and linearization . 17

1.2.1 Formulation concepts . 18

1.2.2 Linearization operations . 19

1.3 Automatically Differentiable Expression Templates Library ADETL . 27

2 The AD Core; Its Design And Evolution 29

2.1 Common aspects of all OO implementations 30

2.1.1 Customized AD data-types . 32

2.1.2 Overloading Operators in C++ 33

2.2 OOAD by Instantaneous Evaluation 38

2.2.1 Univariate expressions . 39

vii

2.2.2 Multivariate expressions . 41

2.3 Lazy AD with Expression Templates 44

2.3.1 Building Expression Templates at compile time 46

2.3.2 ET Evaluation; Dense Multivariates 51

2.3.3 ET Evaluation; Sparse Multivariates 52

2.3.4 Summary . 58

2.4 Sparse Linear Combination Expressions 59

2.4.1 Building and destroying SPLC expressions dynamically 61

3 Using and extending the ADETL 65

3.1 Automatic Variable Set Objects AVSO. 67

3.1.1 ADCollection concept and types. 69

3.1.2 VariableOrdering concept and types. 70

3.1.3 VariableActivation concept and types. 72

3.1.4 A complete AVSO VariableSet usage example. 74

3.2 Automatically differentiable variable data types 77

3.2.1 The ADCollection concept. 78

4 ADETL Simulators and computational examples 83

4.1 So, what is the overhead of this abstraction? 84

4.1.1 Example 1: Two dimensional, nine component model 86

4.1.2 Example 2: A five-spot pattern in a two-dimensional heteroge-

neous domain . 88

4.2 Summary . 93

5 Possibilities for the future of the ADETL 95

5.1 Old concepts, new directions . 96

5.1.1 More datastructures and heterogeneous expressions across them 97

5.1.2 What is a variable set today and what will it be tomorrow? . 97

5.1.3 Thread safety first . 99

5.2 Synthesized Concepts For The ADETL 99

5.2.1 Automated performance tuning 99

viii

5.2.2 Code verification, generation, and evolution 100

II The Nature Of Nonlinearities In Simulation And Solu-

tion Methods That Understand Them 102

6 Introduction 103

6.1 Timestepping and nonlinearity in implicit models 105

6.1.1 The Newton Flow and Newton-like methods 106

6.1.2 An example to illustrate challenges encountered by Newton’s

method . 107

6.2 Safeguarded Newton-Like Methods In Reservoir Simulation 113

6.2.1 Examples of the performance of state-of-the-art solvers. 116

7 Adaptive Localization 121

7.1 Basic ideas and motivation . 123

7.2 Locality in transport phenomena . 125

7.2.1 Scalar Conservation Laws . 127

7.2.2 Multi-dimensional problems 135

7.3 General Coupled Systems . 136

7.4 Summary . 136

8 A Continuation-Newton Algorithm On Timestep Size. 138

8.1 Associating a timestep size with iterates 139

8.2 The Continuation-Newton (CN) algorithm. 141

8.2.1 High level outline of CN . 141

8.2.2 Parameterizing and following the solution path. 145

8.2.3 Computing the tangent to any point on a solution path. . . . 146

8.2.4 Defining a convergence neighborhood. 149

8.2.5 Step-length selection along tangents. 150

8.3 Computational Examples . 154

8.3.1 Single-cell model . 154

8.3.2 Buckley-Leverett models . 157

ix

9 Computational Examples 167

9.1 Two-phase compressible flow in two dimensions 167

9.1.1 Examples . 168

9.2 Summary . 173

10 Discussion And Future Work 177

Nomenclature 179

Bibliography 182

x

List of Tables

3.1 A hypothetical set of primary variables for a three-phase problem. A

check (x) marks an active independent unknown. 73

4.1 Time-stepping and solver statistics for a simulation using GPRS and

ADGPRS. 88

4.2 Computational time . 88

4.3 Time-stepping and solver statistics for a simulation using GPRS and

ADGPRS. 92

4.4 Computational time . 92

xi

List of Figures

1.1 Depiction of an architecturally monolithic simulation software system. 5

1.2 The space of monolithic simulators spanning two axes; instruction and

memory model, and physical model. The result is a many-code, many-

executable space of applications. 6

1.3 An illustration of the Data Abstracted and Object Oriented architec-

tural style. 7

1.4 The Data Abstracted and Object Oriented architectural style admits

variations by selecting individual implementations of its components.

The connectors must remain the same to allow plug-and-play flexibility.

In this style variations are obtained by a one-code, one-executable system. 8

1.5 A schema of a multi tier architecture of a simulation application. Each

layer is comprised of modules from the layer below it, and adds new,

higher order concepts. Each layer can be used on its own to generate

an application, or it can be used to build elements in a layer up. . . . 9

1.6 A Multilayer schema of a scientific computing module. An expert

system applies domain knowledge, and along with an interface selector,

puts together tailored applications on demand. 11

1.7 A survey of software in scientific computing. 12

1.8 An inheritance diagram of a well control object. There are four con-

crete ways to implement a well control object. Any of the four can be

referred to using a link to a well control object. The specific imple-

mentation choice is deduced at runtime based on the context. 14

xii

1.9 The ordered parse graph representation of the sequence of intermedi-

ate steps in evaluating Equation 1.2.1. The ordering is dependent on

operator precedence rules. 21

2.1 An illustration of the composite datastructures within ADETL. The

outermost structure is a collection of differentiable scalars. Differen-

tiable scalars store function values as well as gradients. The Jacobian

matrix is formed by simply augmenting the set of gradients as its rows. 32

2.2 The basic Expression Templates resultant, T , contains the expression’s

value and the parse graph representation of its derivative. 45

2.3 The parse graph template type composition generated by an ET eval-

uation of f ′ × g + f × g′ + h′. 47

2.4 An illustration of the two phases of an axpy routine to evaluate the

sparse vector expression y = X1 +X2. 53

2.5 An illustration of a one-pass routine to evaluate the sparse vector ex-

pression y = X1 +X2. 54

2.6 Evaluation sequence of a hypothetical sparse ET graph with 4 argu-

ments, and a total of 3 logical nonzero entries. Red, thin arrows in-

dicate branches of the graph that are inactive. Green, thick arrows

indicate active branches involved in the current nonzero entry. 57

2.7 An illustration of an SPLC expression attached to the result of an AD

scalar expression. 60

2.8 SPLC expressions are represented by a one-directional linked list. There

are three fundamental operations the form an SPLC expression. . . . 63

3.1 Overview of the four layer architecture of the ADETL. 66

3.2 A conceptual view of the way ADETL treats variable switching. . . . 76

3.3 ADETL treats variable switching by modifying the sparse Jacobian

matrix of the unknowns. 77

3.4 Taxonomy chart and examples of collection datastructures that are

available through the ADETL. 81

xiii

4.1 Pressure (bar) contour plots for three time snapshots during the course

of a simulation. The reservoir is initially at 75 bar. An injection well

is located at the top left corner and is operated at a BHP of 140 bar.

A production well located at the lower right corner is operated at 30

bar. 86

4.2 Gas saturation time snapshots of a simulation of a reservoir that is

initially oil saturated. An injection well located at the top left corner

introduces a gaseous mixture of Methane and Carbon Dioxide while a

production well located at the lower right corner produces a mixture

of gas and oil. 87

4.3 A plot of the logarithm of permeability taken from the tenth layer of

the SPE 10 model [16]. The porosity used in this example is correlated

with permeability. 89

4.4 Pressure (psi) contour plots for three time snapshots during the course

of a simulation. The reservoir is initially at 1100 psi. An injection well

is located in the center of the model and it is operated under a BHP

control 1828 psi. Four productions wells are located at the corners of

the model, and are operated at 435 psi. 90

4.5 Gas saturation time snapshots of a simulation of a reservoir that is

initially oil saturated. An injection well located at the center introduces

a gaseous mixture into the reservoir. 91

4.6 Derivative sparsity structures, call frequencies, and typical execution

times of three major components of formulation and linearization rou-

tines; thermodynamic stability calculations, property and accumula-

tion calculations, and stenciling routines. 93

5.1 A schematic of a potential direction for the Automatic Variable Set

Object AVSO layer of the ADETL. To reduce the potential for subtle

logic errors, the AVSO provides a limited set of contexts to manage

variables in a simulation code. 98

xiv

6.1 Fractional Flow curve and saturation solution profiles for a 1-dimensional

Buckley-Leverett problem without gravity. 111

6.2 Fractional Flow curve and saturation solution profiles for a down-dip

1-dimensional Buckley-Leverett problem. 112

6.3 Fractional Flow curves for a 1-dimensional Buckley-Leverett problem. 113

6.4 Residual norm contour lines, high-fidelity Newton flow integral paths

(dotted), and Newton iterations (arrows) for two cases of Problem 1. 114

6.5 Oil saturation snapshots over a simulation of a model with oil on the

bottom initially, a water injector in the lower right corner, and a pres-

sure controlled producer in the upper-right. 118

6.6 The number of iterations required to solve a sample time-step size using

Standard Newton (SN), Eclipse Appleyard (EA), Modified Appleyard

(MA), and a Geometric Penalty (GP). 120

7.1 An illustration demonstrating the locality of computed linear updates

(continuation tangents or Newton steps) for a one-dimensional piston-

like front. 126

7.2 Sketch of a 1 dimensional mesh over which an iterate involves changing

upwind directions. 132

7.3 The imposed initial condition for a hypothetical downdip Buckley-

Leverret problem. The triangular markers label components that pro-

duce nonzero entries in the residual vector. 133

7.4 The residual obtained by using the imposed initial condition in Fig-

ure 7.3 as a first guess. The triangular markers show the four compo-

nents that have the largest nonzero residual errors. 133

7.5 The blue solid line shows the Newton update obtained by solving the

entire system. The red line with square markers shows the Newton

update obtained by solving for only the flagged components. This is

obtained for an absolute error tolerance of 0.09. 134

xv

7.6 The solid blue line shows the Newton update obtained by solving the

entire system. The red line with square markers shows the Newton up-

date obtained by solving only the flagged components of the problem.

This is obtained for an absolute error tolerance of 0.001. 134

7.7 This figure presents the flagging results using a range of maximum

absolute error criteria. In blue, is the absolute value of the Newton

update that is obtained if the entire system were solved. Each of

the red dashed level-lines demarks a flagging trial using the level’s

absolute error tolerance. The red stars on each level line show the

flagged portion of the domain to be solved by the localization algorithm.135

7.8 A single non-zero entry in the residual can be tracked through the

directed upwind graph in order to determine its range of influence on

the corrective linearized update. 136

8.1 Solution path diagrams and solution methods depicted for a problem

with a single time-dependent unknown S. The old state, for a zero

timestep, ∆t = 0, is Sk, and the solution at the target timestep,

∆ttarget, is Sk+1. 140

8.2 Illustration of a model problem designed after a single cell view of

two-phase incompressible flow. 154

8.3 The residual curves of a single cell problem evaluated for various timestep

sizes (solid blue lines). Each residual curves intersects the zero resid-

ual plane at one solution point (red square markers). The locus of all

solution points forms the Solution Path (solid red line). 155

8.4 Illustration of the sequence of iterates obtained while solving a timestep

using the method in [41]. The solid circular markers denote the five

iterates that occur during the solution process. The dashed arrows are

the enumerated sequence of steps taken. 156

8.5 Illustration of the sequence of iterates taken to solve a timestep using

the Continuation-Newton algorithm. Steps three and five are Newton

correction steps, while the remainder are tangent steps. 157

xvi

8.6 Starting iterate and tangent update for a 1-dimensional Buckley-Leverett

problem with no gravity. 158

8.7 For a particular time, the current state is depicted with circle markers,

the tangent update with star markers, and the actual solution with

square markers. This is presented for two different continuation step-

lengths. 160

8.8 Residual norms for various step-lengths along a single tangent. 161

8.9 Convergence characteristics of the CN method compared to Modified

Appleyard Newton. 162

8.10 A starting point for a continuation timestep and the corresponding

initial tangent vector. 163

8.11 For a particular time, the current state is depicted with a solid line,

the tangent update with a dotted line, and the actual solution with a

dashed line. This is presented for two different continuation step-lengths.164

8.12 The residual norm versus step-length size using a tangent step, and

the initial state as a guess. 165

8.13 Convergence characteristics of the CN method compared to Modified

Appleyard Newton. 166

9.1 Oil saturation snapshots over simulations for a gravity segregation case. 170

9.2 Results for a gravity segregation problem with compressibility. 172

9.3 The average fraction of unknowns solved for at each iteration using

localization. 173

9.4 Water saturation snapshots for an unstable injection problem with

gravity. 174

9.5 Computational effort required to solve a full simulation in one timestep

using the proposed Adaptively-Localized-Continuation-Newton (ALCN)

algorithm, and the Modified Appleyard Newton method. 175

xvii

Part I

The Automatically Differentiable

Expression Templates Library

1

Chapter 1

Introduction

As conventional hydrocarbon resources dwindle, and environmentally-driven markets

start to form and mature, investments are expected to shift into the development of

emerging subsurface process technologies. While such emerging processes are char-

acterized by a high commercial potential they are also typically associated with high

technical risk. The development pipeline starts from basic and applied research before

moving onto proof-of-concept studies and field testing, finally leading to commercial-

ization. The time-to-market along comparable development pipelines, such as for

Enhanced Oil Recovery (EOR) methods in the oil and gas industry, is on the order

of tens of years. Subsequently, in addition to the value of simulation to commercial-

scale stages, there is much value in developing simulation tools which can shorten the

time-to-market, making investment shifts more attractive. Increasing computational

power and adoption are likely to further the importance of simulation. Additionally,

the steady growth in remote sensing technology and data integration methods makes

simulation objectively relevant to decision making. There are two challenges towards

using simulation as a scientific discovery tool in early development stages as well as a

tool for decision making; the growing complexity of the problem base and a rapidly

changing computer architecture scene.

Current examples of emerging processes include peculiar flow effects in Unconven-

tional Gas Production, Underground Coal Gasification, Electro-thermal Stimulation

in Heavy Oil, and Enhanced Geothermal Systems. The underlying commonality that

2

CHAPTER 1. INTRODUCTION 3

characterizes such emerging processes is their physical complexity. One aspect of the

complexity is in the superposition of a wide range of physical phenomena each oc-

curring at a different scale, and at different times throughout the life of the process.

Another aspect of complexity is in the nonlinearity of the underlying constitutive

relations which tend to evolve steadily and in parallel with experimentation. The

technical ability to serve this application space therefore clearly relies on the abil-

ity to extend and customize commercial grade software to incorporate the new and

continuously evolving models within accepted computational performance standards.

This ability has become a technical software issue, raising questions regarding ab-

stractions and software architecture.

A second motivating force for this work is a rapidly changing hardware scene. With

the popularization and ubiquitous availability of multi-core multi-processor platforms,

and the promise of heterogeneous or hybrid systems (e.g. Multi-core chips and General

Purpose Graphics Processing Units GPGPU) the hardware problem has become a

software problem, and according to Herb Sutter we are at a fundamental turning point

in software development [65, 64]. Not only do we need to rethink software abstraction,

but also, detail programmers need to become more adept at tuning and optimizing

code with a sensitivity to the underlying target hardware architecture. The challenge

of designing and developing simulation software for future platforms is significant,

especially in light of the current and growing complexity. Simulation codes need to be

designed so that they are very quickly adapted to new or multiple platforms without

a need to re-gut or overhaul major pieces of software with each release. Without

further advances, solutions to this challenge are very much orthogonal to the interest

in comprehensive or general purpose tools.

Considering these two broad goals; rapid extendability and minimally invasive

platform awareness, this work analyzes a major component of all serious simulation

software. The formulation and linearization of nonlinear simultaneous equations is

the archetypical inflexible component of all large scale simulators. The author has de-

signed, developed, and tested a software framework that allows rapid customizations

to the core of any simulation model using domain specific concepts only. Notions of

CHAPTER 1. INTRODUCTION 4

platform specific programming and tuning are incorporated into key underlying ker-

nels which are effectively abstracted from the simulator developer. They exist behind

the scenes.

1.1 Modern Simulation Software

With the hopes of meeting the present and upcoming challenges, today’s simulation

software developer may often find herself concerned with abstraction decisions and

choices. These concerns are valid and can easily become overwhelming considering

how challenging it is to deliver software that is comprehensive, rapidly extendable,

and that possesses some form of minimally invasive platform awareness. How can

we build simulation software that is both general or comprehensive, and yet, very

specific without killing performance? The only duly diligent answers to this question

are those that visit both the fundamental architectural choices and the programming

abstractions with which simulators are conceived.

1.1.1 Simulation Software Architectures

A software system architecture is a logical organization of its components. Similar to

organizational charts that are used to describe members of an organization and the

interactions between them, software architectures are often represented and commu-

nicated using drawings. Garlan and Shaw [31, 30] propose a common framework with

which to view software architectural styles. Their framework treats the architecture

of a system as a collection of computational components along with a prescription of

their interactions or the connectors between them.

Once there was a Monolithic Style

The earliest reported simulators (see for example [66, 55] were architected as Mono-

lithic Systems that carry out the complete task of running a simulation from end to

end. Figure 1.1 illustrates a monolithic simulator as simply nothing more than a box.

In the context of these monolithic architectures, modularity into components took the

CHAPTER 1. INTRODUCTION 5

Figure 1.1: Depiction of an architecturally monolithic simulation software system.

form of programmer remarks and comments that may mark sequences and branches.

Connectors between such components were simple; a pipeline flow of data through a

sequence of operations. This architectural style earns the popular label, ”spaghetti

string code”. Monolithic forms of modularity have proven to be practically of little

use in terms of their maintainability and many such legacy codes have been shelved

in favor of another breed of Monolithic system; structured modular simulators. The

growing faith in compiled languages spurred the support of a structured program-

ming style. This led simulator developers to modularize applications by introducing

procedures and functions which would be re-used and would in theory improve main-

tainability. Nevertheless, the architecture remains monolithic in the sense that data

still moves through a pipeline sequence of operations.

Monolithic systems must essentially be completely re-written to achieve variations

on a specific task. In fact, the monolithic architecture leads to many codes and

many executables. Figure 1.2 illustrates a matrix of distinct simulation solutions,

each of which solves a particular set of problems in a particular manner. Clearly

as the space of possible variations expands, the number of solutions required grows

combinatorially.

Despite this shortcoming, even today, many would argue that such legacy codes

have an undeniable edge in terms of their computational performance relative to

more maintainable architectures. The reality is that the firm faith in monolithic

architectures is fueled by more than just nostalgia. The undeniable fact is that such

architectures almost force the designer and programmer to avoid expensive operations

CHAPTER 1. INTRODUCTION 6

Figure 1.2: The space of monolithic simulators spanning two axes; instruction and
memory model, and physical model. The result is a many-code, many-executable
space of applications.

such as dynamic memory, copying memory back and forth, context switching, and to

a large extent, indirection.

Data Abstraction and Object Orientation

As a first response to the frustration with the maintainance of monolithic codes, a

different kind of architectural style quickly became the de facto standard for large

scale simulator designs [13, 53, 22]. In Data Abstracted and Object Orientated archi-

tectures, data and associated operations are encapsulated in abstract data types. A

specific instance of an abstract data type is called an object. While objects form the

components of this style, the connectors are essentially a set of procedure or function

invocations which form the interface of an object. Objects are responsible for main-

taining some invariant property and the details of how it is implemented are hidden

form other objects. Figure 1.3 illustrates an Object Oriented simulation architecture.

The objects and their connections are depicted by Figure 1.3(a) while Figure 1.3(b)

illustrates a zoomed view onto one module which is responsible for encapsulating

CHAPTER 1. INTRODUCTION 7

(a) Depiction of a simulation sys-
tem with a Data Abstracted
and Object Oriented Architecture.
Each component is a module that
hides its own functionality and
data. Modules are connected by
fixed interfaces.

(b) A module of a fluid concept will typi-
cally have several implementations, each of
which fulfilling the needs of some sort of
specific instance. The interface to the mod-
ule remains fixed regardless of the internal
behavior. This is a form of polymorphism.

Figure 1.3: An illustration of the Data Abstracted and Object Oriented architectural
style.

data and algorithms concerning fluids. The fluid object has many possible internal

implementations, and yet all implementations need to fit within a prescribed interface

which is depicted by the sockets in Figure 1.3(b).

Perhaps the most outstanding advantage of Object Oriented styles is that they

admit a one-code, one-executable model to delivering a range of possible simulator

variations. The General Purpose Reservoir Simulation idea is a concrete example of

this. With a single code-base leading to a single executable the GPRS [13] allows

users to perform two point and multi point flux approximation simulations for com-

positional or black oil models. Figure 1.4 shows how this style facilitates this model

of extendability. The difference between the Black Oil serial simulator depicted by

Figure 1.4(a) and the compositional distributed memory simulator depicted by Fig-

ure 1.4(b) is in the choice of internal implementation of specific objects. Rather than

re-write the whole simulator, an extension can be made possible by adding a specific

internal implementation of one or more modules. The object model and connectors

remain unchanged, while internally, objects use one of many possible variations. In

the language of Object Oriented design, this is called polymorphism.

CHAPTER 1. INTRODUCTION 8

(a) A black oil serial simulator. (b) A compositional distributed simulator.

Figure 1.4: The Data Abstracted and Object Oriented architectural style admits
variations by selecting individual implementations of its components. The connectors
must remain the same to allow plug-and-play flexibility. In this style variations are
obtained by a one-code, one-executable system.

The advantageous aspect of a component object model is itself the source of a

number of its shortcomings. The first shortcoming is concerned with medium to long

term maintainability. In the short term, the intent of modular architectures is to

enable extensions by modifications, substitutions, or additions to modules of inter-

est, isolating cross-module dependencies. Over the course of several years however,

as the problem base to be covered expands dramatically and in unanticipated ways,

the object component philosophy lewads to the need for a complete re-write of the

simulator. In order to maintain the isolation of items of functionality and their asso-

ciated data from each other and to eliminate the need for intimate knowledge of every

aspect of all modules, the developer is bound to run into new concepts that simply

do not fit the imposed rigid mold. The second shortcoming is one of computational

efficiency. Polymorphism inherently encourages indirection and substantial runtime

context switching. That is, the means available to achieve polymorphic architectures

often force the developer to make numerous decisions at runtime. These branches

can have a significant impact on performance.

CHAPTER 1. INTRODUCTION 9

Figure 1.5: A schema of a multi tier architecture of a simulation application. Each
layer is comprised of modules from the layer below it, and adds new, higher order
concepts. Each layer can be used on its own to generate an application, or it can be
used to build elements in a layer up.

CHAPTER 1. INTRODUCTION 10

Multi layered Architectures

A common simulation software architecture today is the Multi layered style. Simu-

lators architected in this style are made up from modules that are pulled out of a

multi layered software framework (for example [23, 5]). Each layer consists of a set

of modules that implement a certain level of functionality and which can be used in

a natural syntax suitable to their level. Higher-layer modules implement increasingly

complex functionality by using lower-layer modules. Apparent advantages of taller

hierarchies are greater flexibility, extendability, and reliability. An important prac-

tical advantage is that layering allows experts from different areas to contribute to

the most suitable layer for their expertise. For example, at the lowest level, com-

puter programming experts can tune the performance of an algorithm to the specific

computer architecture, while scientists and engineers can use a mathematical syntax

created by these modules to contribute their domain expertise without the burden of

low-level details. Figure 1.5 depicts such an architecture.

Zooming into the scientific computing component, Figure 1.6 presents a possible

multi layered hierarchy of successively abstracted scientific computing elements which

can be used to put together a numerical simulator. Then lowest layer is concerned

with memory and thread management which is a basic function of all codes. The

usage syntax of modules within this layer deals with basic concepts such as memory

addresses and locality of reference. The highest layer provides modules that imple-

ment discretizations of state vectors and partial differential operators. The syntax

used in this layer is more natural to a simulation scientist whose level of granularity

is on the level of putting a time-stepping module together with a solver to build a

simulator. It is important to emphasize that as long as each added layer moving up

the hierarchy is constructed with clear limits on the associated abstraction penalty,

any combination would produce an efficient code.

A potential implication of taller multi-layer frameworks enabled by such abstrac-

tions is the emergence of fully-configurable and customized models on demand. As

in Figure 1.6, domain experts can generate tailored purpose tools and to match them

with interfaces suited to the purpose at hand. For example, using the same core soft-

ware, on-site production monitoring could involve near-well specific numerics with an

CHAPTER 1. INTRODUCTION 11

Figure 1.6: A Multilayer schema of a scientific computing module. An expert system
applies domain knowledge, and along with an interface selector, puts together tailored
applications on demand.

CHAPTER 1. INTRODUCTION 12

Figure 1.7: A survey of software in scientific computing.

interface through a hand-held device, whereas research into new Enhanced Oil Recov-

ery (EOR) processes could involve rapid prototyping of new physics and formulations.

This architecture leads to a one-code, multiple executable space of variations which

ideally is a best of both worlds solution. The performance of runtime polymorphism

is minimized while combinatorial flexibility is realistic.

Figure 1.7 surveys a set of modern scientific computing software, arranged in a

multi layered view. Subjectively at least, mid-layer Scientific Computing software

such as is in the areas of generic Nonlinear Solvers and Vector Calculus support are

not considered mature. In the example of Vector Calculus there is little to no soft-

ware that efficiently provides support to major simulation software. Linear Algebra

packages seem to be the exception however. Numerous robust and popular Linear

Algebra packages are available and they are typically built directly form low-level

layers such as the Basic Linear Algebra Subroutines BLAS. Within this context, this

work contributes to the mid-level layers with the goal of bringing simulation systems

closer to the ideal of providing a single efficient and maintainable source base, and

CHAPTER 1. INTRODUCTION 13

multiple tailored executables on demand.

1.1.2 Programming Abstraction Paradigms

Programming abstraction paradigms are different styles of abstractions used to model

components and connectors. Programming languages typically support more than one

paradigm. Despite this, it may seem more natural to use one language over another

when committed to one specific abstraction style. Often an application is written

using more than one paradigm or language. With the hopes of meeting the goal of

furthering the multi layered architecture, it is useful to consider three paradigms; the

Object Oriented, Generic, and Metaprogramming paradigms.

Object Orientation in reservoir simulation

The Object Oriented Programming (OOP) paradigm provides the developer with

language facilities and constructs with which to easily deliver an Object Oriented

software architecture[63, 29]. For example, the notion of polymorphism from the

architectural perspective is implemented using specific OOP constructs. Simulators

developed entirely with this paradigm introduced more flexibility as far as an Object

Oriented architecture admits. However, such simulators typically consist of at most

two abstraction layers[72, 14]. The upper-layer is typically heavy, and consists of Ob-

ject Oriented modules, internally implementing computational kernels in a structured

paradigm. The lower-level is typically a collection of libraries which implement the

most basic data-structures and associated algorithms.

In reservoir simulation, and in scientific computing in general, this top-heavy

design choice was often made out of necessity. The issue was that the OOP paradigm

offered higher degrees of abstraction at the cost of notable performance hits. The

primary source of such degradation in computational performance is polymorphism.

To understand this, we consider the example of implementing a well control object

within a large OO simulator.

Figure 1.8 shows the system diagram for a well control object. The object can

be implemented in one of four concrete ways; Bottom Hole Pressure (BHP), oil,

CHAPTER 1. INTRODUCTION 14

Figure 1.8: An inheritance diagram of a well control object. There are four concrete
ways to implement a well control object. Any of the four can be referred to using
a link to a well control object. The specific implementation choice is deduced at
runtime based on the context.

gas, or water rate control. The OOP implements polymorphic behavior through a

mechanism called inheritance. With this construct, BHP control objects are said

to inherit common control features such as interface from the abstract well control

type. The BHP control concrete type is said to extend the well control type with

specifics. The desirable feature of this is that extending the well control variations

of a simulator is simple in concept. A developer can add another concrete type that

inherits the general interface of the well control type. There are however numerous

albeit subtle potential pitfalls to the liberal use of this construct.

Firstly, writing a new concrete type may be a substantial endeavor in and of

itself. The neatness of the existing inheritance relations and their common interface

may need to be re-examined, and the object implementation itself is typically built

using lower-level objects which themselves are more than likely to be polymorphic.

This leads to a deepening of the inheritance tree. This is where the dreaded OOP

performance hits can come into play. At runtime, an owner of a well control object

must address it by an indirect reference. This is because the precise nature of the

internal details of the object are not known to the owner. More precisely, when well

controls are to be treated as just that, regardless of their internal implementation, the

strongly typed nature of most compiled languages requires that one level of indirection

be used. At runtime, depending on the context, the appropriate implementation

is selected. This means that at every inheritance juncture in a possibly very tall

hierarchy, a suitably large jump table is used. This sort of branching is not only costly

CHAPTER 1. INTRODUCTION 15

in and of itself. A more severe cost could be the disruption of inlining. Consider the

consequences of a simple query to see if a certain well-control is satisfied. In this

example design, this would be performed for each well, with every residual call in

each nonlinear iteration of each timestep of a simulation. Each of these calls triggers

a conditional branch which leads to a function call involving perhaps a couple of lines

of code. This could be disastrous. We need a way to parameterize objects by the

type of their inner workings so that we can avoid these runtime performance hits.

Generic Programming

The Generic paradigm introduces a way of programming algorithms generically, leav-

ing it up to compilers to instantiate or adapt to specifics based on the context in

which the algorithm is being used. The context dependencies are inferred at compile

time, and so the generic paradigm introduces the possibility for a new kind of poly-

morphism. Compile-time polymorphism promises to rid designers and implementers

from the runtime costs of OOP polymorphism while retaining some of its flexibility

advantages. The idea is to offer Object-Oriented flexibility at little, or no, overhead

compared to structured codes[39, 57, 68].

A principle philosophy behind the generic paradigm is a separation of datastruc-

ture and algorithm. The C++ Standard Template Library (STL) is a prime example

of this. Various sorting routines are available and each one works with any datastruc-

ture that satisfies certain broad criteria. The specializations and specific accommo-

dation choices within the algorithm are made at compile time. In that sense, the STL

shows precisely how the generic paradigm introduces a one-code, many-executables

scenario. The idea is to use the generic paradigm to introduce programming in the

middle. Modules in such intermediate layers build onto lower-layer primitive or intrin-

sic libraries, and they implement enriched data-structures with enriched algorithmic

capabilities. Higher layers use the OOP to deliver runtime flexibility without excessive

abstraction performance penalties.

A notable generic programming technique that has impacted the scientific com-

puting community is known as Expression Templates (ET). The ET technique was

first described by Veldhuizen [70], and independently by Vandevoorde [67], and in

CHAPTER 1. INTRODUCTION 16

the scientific computing context by Haney [40] and Kirby [45]. It makes heavy use

of the templates feature of the C++ language to eliminate the overhead of opera-

tor overloading on abstract data-types, and without obscuring notation. To date,

the major scientific computing applications which capitalized on this technique are

predominantly in the Linear Algebra and other mid-layer generic data-type settings.

Production grade codes include the Parallel Object Oriented Methods and Appli-

cations (POOMA)[42] collection, the Matrix Template Library (MTL)[62], and the

Blitz++[71, 69] vector arithmetic library. These efforts are often credited for demon-

strating the emergence of the C++ programming language as a strong contender to

Fortran in terms of performance in scientific codes [39, 57, 68]. At the time of develop-

ment of the ET technique however, compiler support and debugging protocols for the

generic metaprogramming paradigm were limited. Only a handful of compilers could

pragmatically handle such code. In contrast, today, all of the major popular optimiz-

ing compilers list pragmatic optimizations to compile heavily generic code. Successful

uses of generic techniques such as ET in scientific computing application areas, and

the continually improving compiler support motivate us to explore applications to

Reservoir Simulation.

Metaprogramming

More recently, several scientific computing initiatives have embraced the Metapro-

gramming paradigm. This paradigm makes further use of compilers to perform actual

computations at compile-time [1]. This spurred a number of initiatives which com-

bined the use of the Generic and Metaprogramming paradigms to create intermediate

abstraction layers. We note that until very recently, compilers did not fully support

the Metaprogramming paradigm. Wider compiler conformance to the language stan-

dard is encouraging mainstream applications, and some of the most recent reports of

Next Generation Simulators take advantage of this[23].

Because of its very nature, metaprogramming lives at compile time only. Not only

are the deductions and operations performed at compile time, but also the resultants

exist at that point as well. A popular trend uses forms of metaprogramming within

Just In Time (JIT) compiler settings to introduce some forms of runtime flexibility.

CHAPTER 1. INTRODUCTION 17

For example, an interpreted code may direct execution. As certain runtime quanti-

ties become known, a JIT compiler uses this information to compile an accordingly

optimized module, which the interpreted runtime environment uses.

1.1.3 The Software Goals

The software objective of this work is to further the way we build reservoir simulation

software for performance and maintainability in light of increasing complexity. We

aim to do this by example. We design, develop, and demonstrate a mid-layer generic

library that can be used with a OOP style or otherwise to build highly configurable

simulation software. We aim to provide clients (other developers) working on top-layer

development with efficient and flexible data-structures that can construct Jacobian

matrices behind the scenes. The aim in terms of interface is a natural syntax for

mathematical expressions. This encapsulation allows clients to avoid large, difficult

to debug, and inflexible pieces of code related to the Jacobian matrix implementation

without sacrificing efficiency.

1.2 Formulation and linearization

Reservoir simulation equations are nonlinear. To obtain discrete approximations with

a certain level of implicitness, simultaneous systems of nonlinear equations need to be

solved. Nonlinear solution methods employ linearization and solution of the resulting

linear systems. For a nonlinear vector function r : Rn → Rm, with n variables and

m equations, linearization involves the computation of the typically sparse Jacobian

matrix, Ji,j = ∂ri
∂xj

, i = 1, . . . ,m and j = 1, . . . , n. The least extensible most tedious

and error prone part of any reservoir simulation software is that implementing this

formulation and linearization component. The evaluation of the residual, r, and the

Jacobian matrix, J , for a given set of unknowns is also a component of the code

which relies heavily on expert domain knowledge of the physical models and their

discrete approximation. Programmers involved in the development of formulation

and linearization codes are typically less interested in, and capable of, hand-tuning

CHAPTER 1. INTRODUCTION 18

for performance. The orthogonality between hand optimization and code clarity

from the domain expert’s view exacerbates the challenge of producing simulators for

emerging computer hardware. For these reasons, formulation and linearization are a

prime opportunity for innovation in software architecture and abstractions.

1.2.1 Formulation concepts

Depending on the physics of a simulation, there is a minimum number of indepen-

dent variables and equations that fix the thermodynamic state of the system. For

example, in isothermal compositional systems, the thermodynamic state is fixed by

as many independent variables as the number of components in the system. All

remaining quantities can be obtained using the independent variables and constitu-

tive relations or algebraic constraints. Often, the algebraic constraints can only be

written as implicit nonlinear functions, and subsequently the inverse needs to be com-

puted. A common tactic is to couple these auxiliary constraints to the minimal set

of discrete equations as a system of Partial Differential Algebraic Equations (PDAE).

The specific choice of independent variables, secondary variables and algebraic con-

straints, and the alignment of unknowns with equations is generally referred to as a

formulation. While different formulations may have different numerical properties,

all formulations lead to the same unique answer. There is considerable interest in

studying the properties of various formulations. Moreover, there is a common belief

that certain problems warrant the use of one formulation over another. Regardless

of the reality behind that belief, it is important for modern simulation software to

accommodate such interests.

The General Purpose Reservoir Simulator [13] proposes a certain general formu-

lation approach. The GPRS approach to formulation is to use the natural variables

as a universal formulation. Any other formulation is attained indirectly within the

linearization process using the Jacobian matrix of the transform from one set of vari-

ables to the other. Variable ordering and alignment are treated using Jacobian matrix

permutation operations. The GPRS approach starts with the full set of equations and

variables, and undergoes a two stage reduction process. First, the system is reduced

CHAPTER 1. INTRODUCTION 19

to the primary set, and then the resultant is reduced to the minimal implicit variables.

While the GPRS formulation approach introduced a far leap from the static formu-

lation setup of its predecessors, these transformation operations are by their very

nature hard coded into the guts of the formulation and linearization routines. Any

subsequent developer that extends a capability within the general purpose umbrella

needs to directly account for the extensions into every formulation transformation

system. This easily turns certain extensions into endeavors that are error prone and

almost impossible to debug by a unit testing methodology.

Phase transitions are a basic fundamental of flow through porous media. Such

transitions are often modeled as instantaneous. Subsequently, the number of degrees

of freedom within an element of a discrete domain is subject to change instantaneously.

Along with the number of degrees of freedom, it is entirely possible that the set of

independent unknowns and the equations that they are aligned with change as well.

This introduces obvious challenges to producing maintainable code. The difficulties

are compounded considering that the precise manner in which the switching between

alternate variable sets is dependent on the formulation used.

One goal of this work is to introduce a general abstraction that provides a generic

and universal model for every possible formulation. Through this abstraction, the

formulation my be specified in a parameter specification type of syntax, and without

any programming, the formulation is realized.

1.2.2 Linearization operations

Once a formulation and its associated concepts are chosen, there are three distinct

methods that can be used to implement Jacobian evaluation routines;

• Manual differentiation involves explicit derivation and programming of all deriva-

tives and Jacobian assembly routines. Most commercially and publicly available

simulators adopt this approach [33, 17, 13]. This is a tedious and notoriously

error prone process, but results in efficiently computed, exact Jacobian matrices

up to rounding error. The chief drawback is the lack of flexibility. Changing

CHAPTER 1. INTRODUCTION 20

numerical formulations or physical models can require partial rewrites of sub-

stantial components spanning many modules from say, property packages, to

equations, to solver setups.

• Numerical differentiation uses truncated expansions, possibly with divided dif-

ferences, along with coloring and separation sparsity-graph algorithms to ap-

proximate the Jacobian [32]. While this approach is flexible, it has three draw-

backs. First, conditional branches cannot be treated as desired (e.g. upwinding

or variable switching). Second, it is not always possible to bound the truncation

error a priori for arbitrary functions. Finally, the asymptotic complexity can

limit the efficiency.

• Automatic Differentiation (AD) is a technique for augmenting computer pro-

grams with derivative computations. AD analyzes the expression parse-tree

and performs a handful of mechanical rules to evaluate derivatives: summa-

tion and product rules, transcendental elementary function derivatives, and the

chain rule. The approach offers flexibility and generality, and accuracy up to

machine precision. However while the asymptotic complexity is comparable

to that for analytical differentiation, the ability to develop optimally efficient

implementations is problem specific and an ongoing question.

To meet our objectives for a mid-layer library, AD seems to be the most viable

approach. AD combines flexibility and accuracy, as well as the potential for opti-

mal efficiency provided implementations are tailored to the application at hand. In

this work, we aim to design and tailor an AD approach to compute general reser-

voir simulation Jacobian matrices automatically in a fast, bug-free, and notationally

convenient manner.

Today, a sizable research community continues to develop various aspects of AD in-

cluding improved methods for higher-order derivatives, parallel schemes, and sparsity-

aware methods. Several comprehensive introductions [56, 27, 34], and volumes of

recent research activity [11, 19, 36] are available. Information about the growing soft-

ware packages, literature, and research activities in the area is available on the World

Wide Web at www.autodiff.org.

CHAPTER 1. INTRODUCTION 21

Figure 1.9: The ordered parse graph representation of the sequence of intermediate
steps in evaluating Equation 1.2.1. The ordering is dependent on operator precedence
rules.

Mathematics of AD

Given a general function of several variables, f : Rn → R, in theory, there are

two alternate algorithmic approaches to AD (and differentiation in general); the for-

ward and reverse (adjoint) modes. For specified independent variables (x1, . . . , xn),

both modes evaluate the function f (x1, . . . , xn), as well as the gradient vector ∇f ≡(
∂f
∂x1
, . . . , ∂f

∂xn

)
. The modes differ in the manner in which these quantities are com-

puted. In the forward mode, the chain rule is used to propagate derivatives starting

from independent variables and progressing towards the dependent variable. On the

other hand, the reverse mode propagates derivatives of the final dependent variable

through a sequence of adjoint additions of intermediate dependent variables. To

propagate adjoints, one must be able to parse an expression, evaluate it, and then

reverse the parse-flow, while remembering or recomputing any intermediate values

that nonlinearly impact the final result.

To illustrate the forward and reverse modes, we apply them to differentiate the

CHAPTER 1. INTRODUCTION 22

scalar multi-variate expression in Equation 1.2.1. Assume that there are three inde-

pendent variables, ordered as (Pi−1, Pi+1, Pi). Following the basic arithmetic prece-

dence rules, and proceeding from the right to the left, the nonlinear function in

Equation 1.2.1 is said to generate a topologically sorted parse-graph as shown in

Figure 1.9. The parse-graph represents the precise sequence of elemental operations

(binary, unary, and transcendental) needed to evaluate the expression.

f (i) = Pi + exp(−Pi) (Pi+1 − 2Pi + Pi−1) (1.2.1)

Computer program compilers parse expressions and apply right to left operator

precedence rules to generate parse-graphs. At run-time, the expressions are evaluated

by a traversal of the graphs, accumulating the final result. Intermediate stages consist

of temporary values for each node computed behind the scenes. We denote such values

as tj, j = 1, . . . ,Mnodes, and present their expressions for this example in the listing

below. Here, Mnode = 10, and in the way that Equation 1.2.1 is written, seven kernel

operations are required.

t1 = Pi−1 t4 = 2t3 t7 = −t3
t2 = Pi+1 t5 = t2 − t4 t8 = exp (t7)

t3 = Pi t6 = t1 + t5 t9 = t6 ∗ t8
t10 = t3 + t9

The forward mode.

Given values for the three independent variables, the forward mode proceeds by se-

quentially computing intermediate-stage values as well as their gradients. This is a

top-down traversal of the parse-graph in topological order. The sequence listed below,

shows the gradient evaluations which occur simultaneously with the function evalu-

ations. There are three initialization stages, followed by seven stages, each of which

involves the differentiation of only a single unary, binary, or transcendental operation.

CHAPTER 1. INTRODUCTION 23

The first three initialization stages state that the gradient of an independent variable

with respect to all three variables is simply the appropriate basis vector. Overall,

this is a sequential process that can propagate the entire gradient along the traversal.

Moreover, it is mostly a serial process unless the parse-graph has separable branches;

for example in this case, steps 4,5, and 6 can proceed in parallel with steps 7 and

8. This kind of separability/parallelism on its own is of unlikely interest in reservoir

simulation applications, since it is difficult to exploit efficiently. Rather, suppose we

are considering the set of three equations
(
f (i−1), f (i+1), f (i)

)
, aligned with the three

unknowns, and augmented with appropriate boundary conditions. Then the evalua-

tion of the three-by-three Jacobian matrix amounts to stacking the three gradients as

rows. Each row computation is separable with little data overlap. This property can

more readily be exploited for computational parallelism on shared memory settings.

∇t1 = [1, 0, 0]

∇t2 = [0, 1, 0]

∇t3 = [0, 0, 1]

∇t4 = 2∇t3 = [0, 0, 2]

∇t5 = ∇t2 −∇t4 = [0, 1,−2]

∇t6 = ∇t1 +∇t5 = [1, 1,−2]

∇t7 = −∇t3 = [0, 0,−1]

∇t8 = t8∇t7 = [0, 0,−t8]

∇t9 = t8∇t6 + t6∇t8 = t8 [1, 1,− (2 + t6)]

∇t10 = ∇t3 +∇t9 = [t8, t8, 1− t8 (2 + t6)]

From the example it is easy to see that if there are Nv logically non-zero entries

in the final gradient, then the worst-case complexity of the forward mode is O (Nv)

times the number of operations to compute a single function evaluation. In this

example 14 additional kernel operations are required beyond the seven operations for

CHAPTER 1. INTRODUCTION 24

the function evaluation. This implies that if one were to apply the forward mode to a

vector function, fi, i = 1, . . . , Nb, then the sparse Jacobian comes automatically at a

price of O (NbNv) scalar function evaluations. This, at least in the asymptotic sense,

is comparable with computing the Jacobian by hand, assuming no exploitation of

repetitive structures is made. Despite this, the complexity result is often considered

too large since it scales with the number of independent variables, and in practice,

expert developers will invariably take advantage of factoring short-cuts for specific

problems. With a combined application of local node reduction graph algorithms and

global separations on columns, it may be possible to further improve the complexity.

Finally, we remark that conditional branches are treated nicely by the forward mode

since only the instantiated branch is evaluated at runtime.

The reverse mode.

The reverse mode proceeds in bottom-up topological order along the parse-graph.

In contrast to the forward mode, elements of the gradient are accumulated indepen-

dently. First the final dependent variable is differentiated with respect to itself for

initialization. Then recursively, the gradient element adjoints are accumulated as in

Equation 1.2.2.

∂tn
∂tn

= 1,
∂tn
∂tj

=

j∑
k=n−1

∂tn
∂tk

∂tk
∂tj

, j = n− 1, . . . , 1 (1.2.2)

After one pass, all individual derivatives are propagated, and then they are as-

sembled into a gradient vector. The sequence listing below correctly computes the

elements of the gradient of Equation 1.2.1 by the reverse mode. We have introduced

the shorthand notation tj,k ≡ ∂tj
∂tk

.

CHAPTER 1. INTRODUCTION 25

t10,10 = 1

t10,9 = 1

t10,8 = t10,9t9,8 = t6

t10,7 = t10,8t8,7 = t6t8

t10,6 = t10,9t9,6 = t8

t10,5 = t10,6t6,5 = t8

t10,4 = t10,5t5,4 = −t8
t10,3 = 1 + t10,7t7,3 + t10,4t4,3 = 1− t8 (2 + t6)

t10,2 = t10,5t5,2 = t8

t10,1 = t10,6t6,1 = t8

In this case, the reverse mode requires only 11 additional kernel operations be-

yond the seven required for the function evaluation. In fact, the reverse mode requires

O (1) times the number of operations for function evaluation. This constant scaling

at first glance is appealing since it implies that a Jacobian can be computed in O (Nb)

scalar function evaluations. The favorable complexity scaling however can be easily

overshadowed by necessary and expensive implementation constructs. It is precisely

the point that the most efficient AD realizations must combine algorithmic and im-

plementation properties along with tailored application to the problems at hand.

For arbitrary sparse Jacobian problems, there are no hard rules as to the most

favorable approach since the underlying sparsity structure and how it is exploited

can influence the scalings. We devise our library with the capability to perform in

either mode, with our current emphasis on the forward mode. The motivation for

this is that hybrid algorithms such as [28] may be explored for further performance

optimization.

While there are numerous reports on the use of AD in numerical simulation and

CHAPTER 1. INTRODUCTION 26

optimization, it is not yet a mainstream approach in industrial-grade, large-scale sim-

ulators [44, 7, 20].

Software Implementations

As outlined above, the algorithmic complexity of AD can be comparable with that of

hand differentiation. Rather, the performance challenge for AD software is in the lack

of implementation techniques that are simultaneously efficient, transparent, and nota-

tionally clear. Modern AD codes are implemented with either Source Transformation

or Operator Overloading approaches.

Source Transformation.

Source transformation involves the development of a pre-processing parser that re-

ceives client code for the residual as input and generates code for derivatives. This

automatically generated code can then be compiled and run. While several highly

efficient, optimizing source transformers are available [9, 8, 58], the work-flow makes

this approach less desirable. Moreover, conditional branches are difficult to treat and

since we are interested in simulating cases where the physics may not be known prior

to run-time, source transformation is not flexible enough.

Operator Overloading.

Operator Overloading involves two steps. First, new data-types are defined to store

both the values of the variables as well as their derivatives. Second, arithmetic and

fundamental functions are re-defined, by augmenting them with information on how

to differentiate themselves and/or recording the sequence of operations performed

on a so-called tape. For example, the multiplication operator knows to multiply

its operands a ∗ b, and to apply the product rule for the derivatives ∇a ∗ b + a ∗
∇b. If the program starts by initializing independent variables with the appropriate

unit derivative with respect to themselves, they can be used as operands creating

dependent variables. This approach allows client developers to write programs for

expressions in a natural manner, and with the full confidence that the appropriate

derivatives are made. A challenge to this approach is efficient implementation.

CHAPTER 1. INTRODUCTION 27

As is well documented [12], the cost of the excellent notational convenience pro-

vided by Operator Overloading is generally too high. Because of the necessary return-

by-value feature, every operator call in an expression results in the allocation of a tem-

porary object on the heap. In turn, this temporary is assigned to, deeply copied by

the calling source, and finally destroyed on exit. Moreover, for collections, one loop is

performed per operator. These two events can cause substantial performance deterio-

ration of more than an order of magnitude. This is due to the fact that the associated

memory calls are expensive, numerous wasted cycles are expended to repeatedly store

and load data from temporaries, and cache lines are continually reloaded from one

level of the expression parse-graph to the other (cache thrashing) [12]. Several Oper-

ator Overloading AD packages are publicly available [35, 60, 6].

1.3 Automatically Differentiable Expression Tem-

plates Library ADETL

By example, this work introduces a software design and implementation philosophy

that addresses the extendability and platform adaptability challenges ahead of the

simulation software development world. The example addresses the challenges in

architecting and developing the formulation and linearization guts of any simulation

code. In particular, the proposed solution consists of an algorithmic framework and

library of automatically differentiable data-types written in the C++ programming

language.

The library provides generic representations of variables and discretized expres-

sions on a simulation grid, and the data-types provide algorithms employed behind

the scenes to automatically compute the sparse analytical Jacobian. Using the li-

brary, reservoir simulators can be developed rapidly by simply writing the residual

equations, and without any hand differentiation, hand crafted performance tuning

loops, or any other low-level constructs. Rather, formulation and linearization code

written using the library, is self-documenting, and reads like language written by a

physics and discretization domain expert.

CHAPTER 1. INTRODUCTION 28

A key challenge that is addressed is in enabling this level of abstraction and pro-

gramming ease while making it easy to develop code that runs fast. Faster than any

of several existing automatic differentiation packages, faster than any purely Object

Oriented implementation, and at least in the order of the execution speed of code

delivered by a development team with hand-optimized residuals, analytical deriva-

tives, and Jacobian assembly routines. A second challenge is in providing a generic

multi layered software framework that incorporates plug-in low-level constructs tuned

to emerging architectures without the need to revise any code written by simulator

developers using the library.

Chapter 2

The AD Core; Its Design And

Evolution

A primary design objective of the ADETL is to provide a generic library of datastruc-

tures and algorithms that allows its users to develop discrete residual equations using

a natural and self-documenting syntax. This design objective naturally precludes

the use of Source Transformation [9, 8, 58] as an implementation option. Despite

its efficacy to produce highly efficient AD code, Source Transformation requires that

users instrument simulator code with pre-processor annotations. The annotations are

intertwined with the underlying computer programming language and must demark

the various differentiation contexts. This annotation process is simply not mathe-

matically natural, and moreover, it severely restricts usage choices by requiring that

they be made at compile time.

To achieve its design objectives, the ADETL core uses an Operator Overload-

ing (OO) approach [35, 60, 6]. The ADETL provides users with the natural syntax

of mathematical operators. There are numerous specific approaches to creating a

functional, generic OO implementation of AD. While these various implementation

approaches provide equivalent semantics from the library user’s standpoint, they dif-

fer dramatically in terms of their computational performance. A primary technical

contribution brought by the ADETL is a novel approach to OO implementations of

AD.

29

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 30

ADETL’s AD core operates behind the scenes. Unlike existing OO packages and

published methods [35, 60, 6], ADETL combines computational performance that

is on par with hand-coded differentiation routines with generic datastructures and

algorithms, a natural vector calculus syntax, and a combinatorial level of flexibility.

We present the linear evolution of the various OO techniques contained in the ADETL,

and we compare and contrast their merits in various contexts. Before that though,

we describe the common underpinnings of all OO implementations; specially defined

AD datatypes, and the operator overloading skeleton.

2.1 Common aspects of all OO implementations

All OO implementations of AD consist of two components. The first component is a

set of customized data-types that are used to represent various variables within a simu-

lator. Unlike typical datastructures used to represent non automatically differentiable

quantities such as those in Linear Algebra packages, the custom AD datatypes aug-

ment both the value and derivative states of the variables which they are used to rep-

resent. Using upper case letters to denote AD variables, they are a mathematic pair;

F = {f, f ′}. Within a simulator, all possible types of variables, intermediate terms,

and residual equations that need to be stored belong to one of the following categories,

Univariate Scalar f : R→ R f ′ = df
dx
,

Multivariate Scalar f : RN → R f ′i = ∂f
∂xi
, i = 1 . . . N,

Univariate System f : R→ RM f ′i = ∂fi

∂x
, i = 1 . . .M,

Multivariate System f : RN → RM f ′ji = ∂fi

∂xj
, i = 1 . . . N, j = 1 . . .M.

A critical functionality of any custom AD datatype is to enable the user to explicitly

control and choose constant, independent, and dependent states. A constant state is

simply one in which a variable has a zero gradient. On the other hand, independent

variables are the numerical unknowns in any sub-context of the residual computa-

tion flow. A characterization of an independent variable state is that its derivative

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 31

with respect to every other variable in its context is zero. For independent univari-

ate scalars, the gradient is one. Similarly, for independent multivariate scalars and

univariate systems, the gradient is an elementary unit vector, ei. Finally for an in-

dependent variable represented as a multivariate system the gradient is the identity

matrix.

The second component is a complete set of mathematical operators that are de-

fined to perform the appropriate evaluation and differentiation, given AD datatype

arguments. Using capital letters to denote augmented AD variables and operations

on them, the binary mathematical operators that need to be defined are,

A±B = {a± b, a′ ± b′},

A×B = {a× b, a′ × b+ a× b′}, and

A÷B = {a
b
, a′ × 1

b
− a

b2
× b′}.

Moreover, a complete AD implementation requires that the most commonly used

transcendental, exponential, and hyperbolic unary functions be overloaded. More-

over, overloaded definitions of all unary operators must assume that the chain rule is

necessary since this is not generally known at compile-time. That is, let F denote a

functional with Frechet derivative F ′, then,

F ◦B = {F ◦ b, (F ′ ◦ b)× b′}.

With these two components in place, OO AD implementations a simulator devel-

oper is free to set any differentiation context, such as a discrete residual evaluation

routine, or a sub-context such as a flash calculation within a residual routine. The

context is set by first declaring all variables using the custom AD datatypes. Next,

the independent variables are specified. Within the AD community, this process is

known as setting the differentiation seed. Finally, the user can simply write the de-

sired evaluation equations using the custom datatypes. The differentiation occurs

behind the scenes, and is performed automatically by the overloaded operators. The

user does not need to write any differentiation formulas.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 32

Figure 2.1: An illustration of the composite datastructures within ADETL. The
outermost structure is a collection of differentiable scalars. Differentiable scalars
store function values as well as gradients. The Jacobian matrix is formed by simply
augmenting the set of gradients as its rows.

While we present the available options and specifics of ADETL in another section,

we need to introduce a few specifics in order to develop the underlying algorithms

and strategies behind the ADETL core.

2.1.1 Customized AD data-types

Figure 2.1 illustrates the design choice of datastructure composition within the ADETL.

The ADETL uses collection datastructures for all systems. Examples of collections

are arrays and dynamically re-sizable vectors or lists. Each element in a collection

can be any type of ADETL scalar variables. The Jacobian of a system is formed

by taking the union of gradients of the scalar elements. In essence, this allows the

ADETL core to concentrate its AD operator functionality to scalar arguments. oper-

ators that are overloaded for systems simply delegate the AD functionality to scalar

operations on an element by element basis. A basic ADETL collection datastructure

is the ADvector< T > template, which uses the datatype identifier T to parameterize

the vector’s element datatype. The only restriction resulting from this design choice

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 33

is that one cannot create systems where one entry is a univariate variable, whereas

in another entry it is a multivariate. Instead, the more general element type needs to

be used throughout for all entries or equations in the vector.

Differentiable scalars are the atomic datastructure of the ADETL core. As de-

picted in Figure 2.1, ADscalar< T >s are comprised of a value and a gradient. The

template datatype parameter, T, is used to specify the intended choice of datas-

tructure to use for the ADscalar’s gradient. This design choice models a generic

paradigm that facilitates the separation of datastructure and algorithm. This way,

all scalars, regardless of whether they are multivariate or univariate, can be treated

universally. Suppose that we have available to us a dense array datatype called

Array, and a sparse alternative called SparseArray. Then, we can declare a uni-

variate scalar as the datatype ADscalar< double >, a multivariate with a dense

gradient as ADscalar< Array >, and finally, a multivariate with a sparse gradient as

ADscalar< SparseArray >. Note that the choice of gradient type not only allows us

to model different domain dimensions and sparsity choices, but also the underlying

implementations may be different also; for example one can drop-in parallel arrays

as a variation. Listing 1 provides a minimal declaration of an ADscalar<> template

which we will use throughout this discussion to illustrate the underlying concepts.

The declaration provides facilities to construct variables using statements such as,

ADscalar< double > X(1.0,2.0); // univariate

ADscalar< Array > Y(1.0, 10); // multivariate with 10 unknowns

ADvector< ADscalar< Array > > Z(100, X); // system of 100 equations

Aside from facilities to create and initialize scalars, the ADscalar<> datatype also

provides access to its value and derivative, and defines the assignment operator, given

a right hand side value, and allows one to set the activation status.

2.1.2 Overloading Operators in C++

The second component of any specific OO approach is to redefine the fundamental

unary and binary mathematical operators so that they perform both their respective

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 34

Listing 1 A minimal implementation of an AD scalar variable data-type.
template< typename T >

class ADscalar

{

protected:

T m_Gradient;

double m_Value;

public:

// Constructors that allocate and initialize ADscalars

ADscalar(double inValue = 0.0, T inGradient = T());

ADscalar(ADscalar< T > & inRHS);

// Set a variable’s AD activation or seed

void make_independent(int _ID);

void make_constant();

// Access to the value and derivative information

double & value();

T & gradient();

// Assignment

void operator= (const ADscalar<T> & in_RHS);

...

};

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 35

value operations, as well as the derivative of the operation. With this infrastructure,

users can write self-documenting automatically differentiation expressions. Consider

as an example adding three univariate scalars using the statements,

ADscalar<double> X(1.0,2.0), Y(2.0,1.0), Z(0.0,1.0);

ADscalar<double> W = X + Y + Z;

W.value(); \\ returns 3.0

W.gradient(); \\ returns 4.0;

X.make_independent();

Y.make_constant();

W = X + Y + Z;

W.value(); \\ returns 3.0

W.gradient(); \\ returns 2.0;

Programming languages such as C++ offer specific facilities for the programmer to

provide multiple definitions for any built-in operator or function. At compile time,

the usage context is analyzed and the most appropriate operator definition is selected.

This choice is then applied in-place for compilation. The context-specific choice de-

pends on the datatypes of the call’s arguments. OO is a convenient infrastructure

with which to implement AD; AD can be implemented by simply providing overloaded

operators to be used for all calls where one or more of the arguments is an AD cus-

tom datatype. All fundamental arithmetic unary and binary operators are redefined

specifically to accept the custom AD datatypes as the arguments and to perform both

the value operation as well as its derivative. This is the basis of all OO implementa-

tions of AD, including all of those in the ADETL. There are numerous specific ways

to define the actions of the overloaded operators however, and these choices dictate

critical performance issues. Before moving on to developing and exploring various

strategies, we present the common aspects across them.

Binary operators such as the addition operator are overloaded using the general

form,

T3 operator+ (const T1 & _A, const T2 & _B)

{

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 36

// create a temporary object of type T3

// temporary object encodes or stores the result and its derivative

// return a copy off the temporary object;

};

where T1 and T2 are the argument datatypes, the combination of which determines

which definition to use in any given context. The datatype T3 is the return type of

the overloaded operator and it is the choice of this datatype that primarily makes

one OO approach differ from another. For example, in the most basic approach,

AD is evaluated directly, and the arguments as well as the return types are AD

datastructures. On the other hand, more sophisticated approaches use operators to

build lightweight representations of an expression’s intended parse graph. In that

case, the return type is the graph encoding datatype, and several operator definitions

must be provided to support operations with graph encoding datatype arguments.

Similarly, unary operators such as the assignment operator are overloaded using

the form,

T2 operator= (const T1 & _RHS)

{

// assign value and derivative from _RHS to self

// return a copy of self;

};

where, once again, the argument type T1 of the usage context determines which

operator definition gets used. In the case of direct evaluation, this type is always

an AD datatype. On the other hand, approaches that rely on building parse graph

representations use a parse graph encoding argument datatype, and the assignment

operator is itself responsible for coordinating the evaluation process.

Pairwise Evaluation refers to the specific mechanism with which compiled lan-

guages such as C++ operate arithmetic expressions. It is a direct consequence of this

inherent feature that each operator instance, such as the addition operator above,

produces some form of temporary storage to hold the resultant of the operation.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 37

The scope of this temporary object is the duration of the expression itself. Pair-

wise Evaluation requires that expressions be executed one operator at a time using a

well-defined order. The order of execution is determined by an Operator Precedence

schedule. For example, since multiplication has a higher precedence than addition,

the expression x * y + z is mathematically equivalent to (x * y) + z rather than

to x * (y + z). Moreover, for operators with the same precedence, all operators

besides unary and assignment operators are left-associative; for example x + y + z is

equivalent to (x + y) + z rather than x + (y + z). In order to produce binary

instructions that execute a pairwise evaluation process, compilers must introduce tem-

porary intermediate resultants for each operator. This has potentially serious perfor-

mance implications, particularly for expressions that involve non-trivial user-defined

arguments and overloaded operators. For example, the expression w = x + y + z, is

executed as the three step sequence,

t1 = x + y

t2 = t1 + z

w = t2

which involves two temporary objects, t1 and t2, created by each of the two op-

erator instances. If the arguments, x, y, and z are built-in types, such as floating

point numbers, then the operators that are used are the built-in ones, and the execu-

tion sequence that is generated is close to optimal. The intermediate temporaries that

are generated are floating point numbers and are placed on the stack. Depending on

the precise target architecture and compiler, the execution results in approximately

three to four read and write machine instructions, and two floating point operations.

On the other hand, suppose that the arguments are objects of a user-defined data-

type such as univariate AD variables, ADscalar< double >. In that case, at compile

time, a search is conducted for the most appropriate operator definition to use. In

this case, that turn out to be the template,

T3 operator+ (ADscalar<double> &_A, ADscalar<double> &_B).

The execution chain that is generated by the compiler in this case is necessarily more

complex, and as we shall discuss, is often far from ideal. The temporary objects in

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 38

this case, are of whatever the return type of the overloaded operator happens to be.

A final piece of background regarding all OO implementations is that certain rules

from mathematics cannot be assumed. For example, the commutativity of operators

including addition should not be assumed. That is while the floating point expression

a + b is equivalent to b + a barring rounding error, this is not a requirement on user

defined operators. Because of this fact, compilers may not be able to optimize the

sequence of overloaded operators as they would for built-in arithmetic. For example,

if a variable a is of type double, modern optimizing compilers will typically replace

the arithmetic sub-expression a+a+a+a with the less costly term 4*a. On the other

hand, in the same example, if the argument a happens to be a user defined datatype,

compilers cannot make the same assumption. Another short-circuited optimization

is common sub-expression elimination. As of the time of writing, there is no wide

support for means to indicate to the optimizer which mathematical rules are safe to

assume.

2.2 OOAD by Instantaneous Evaluation

The most basic OOAD approach is instantaneous or direct evaluation. When an

arithmetic expression involving any AD datatype is parsed, the compiler chooses AD

overloaded operators that evaluate the operation and its derivative directly, producing

an AD resultant one operator at a time. The templates facility affords the possibility

of writing one set of overloaded operators for all AD scalar types. This is accom-

plished by making the gradient datatype a template parameter. For the purposes of

this discussion, we restrict attention to homogeneous expressions; that is expressions

involving arguments with the same gradient datatype. The comprehensive OOAD ap-

proach within the ADETL uses a compile-time metaprogramming technique known

as type traits promotion to provide the pre-processor with the most appropriate re-

sultant datatype given two arguments with different gradient datatypes, e.g. adding

two scalars, one with a dense gradient, and the other with a sparse one producing a

dense resultant. In this scheme, binary operators such as multiplication are written

as,

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 39

template< typename T >

ADscalar< T > operator* (const ADscalar<T> & _A,

const ADscalar<T> & _B)

{

ADscalar< T > t1;

t1.value() = _A.value() + _B.value();

t1.gradient() = _A.value() * _B.gradient() +

_A.gradient() * _B.value();

return t1;

};

The direct OOAD implementation is rather straight-forward. Unfortunately, a

closer inspection of the execution chain that OOAD produces quickly reveals serious

performance concerns for multivariate variables. Owing to the pairwise evaluation

process, the execution chain typically results in a several-fold degradation in per-

formance over hand coded operations. Next we walk through illustrations of these

execution chains for univariate terms and for multivariates.

2.2.1 Univariate expressions

Within simulators, univariate variables may be declared frequently to store phase

and component properties within individual simulation cells. For example, in an

isothermal Black Oil setting, phase density and viscosity can be modeled to depend

on pressure only. Subsequently such variables are most suitably stored in univariate

scalar entries rather than say a sparse multivariate with a single nonzero element all

the time. It is common to use nonlinear analytical expressions to compute these vari-

ables. Moreover, the call frequency of evaluating these quantities is substantial. For

this reason, it is critical for an AD implementation to perform univariate computa-

tions efficiently. We compare the instructions generated by a hand written univariate

expression with that generated by the OOAD approach.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 40

Mathematically, the variable we hope to evaluate is,

ρ =
{
e(P−Pr)2

, 2 (P − Pr) e(P−Pr)2
}
.

First, a hand-crafted implementation may be,

const double dp = p - pr;

const double rho = exp(dp * dp);

const double d_rho_d_p = 2.0 * dp * rho;

It involves a single exponential evaluation and four simple operations. Only a couple

of temporary variables are explicitly declared on the stack. Now consider the OOAD

statement,

const ADscalar< double > RHO = exp((P - pr) * (P - pr));

The statement evaluates the value and derivative of density while appearing more

compact and self-contained compared to the hand-coded alternative. Proceeding by

evaluating the expression one operator at a time, inlining the overloaded instructions,

the simple OOAD statement generates the following instructions,

double t1, t2;

t1 = P.value() - Pr;

t2 = P.gradient() - Pr;

double t3, t4;

t3 = P.value() - Pr;

t4 = P.gradient() - Pr;

double t5, t6;

t5 = t1 * t3;

t6 = t1 * t4 + t2 * t3;

double t7, t8;

t7 = exp(t5);

t8 = exp(t5) * t6;

RHO.value() = t7;

RHO.gradient() = t8;

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 41

Unlike the hand-coded alternative, the instruction pipeline length is significant, and

the amount of stack space explicitly declared is almost three times larger. This may

seem like a serious issue at first. However, realizing that on most architectures, there

is ample stack space, and floating point operations are not a bottleneck compared to

memory bandwidth, this is actually not a terrible idea. The performance penalty of

the notational convenience is minimal. The situation is far more bleak however for

multivariates.

2.2.2 Multivariate expressions

Compositional models typically require the evaluation and differentiation of interme-

diate quantities that depend on several independent unknowns. For example, the

density of a phase in a simulation grid block depends on component fractions as well

as pressure. The number of components in such models typically vary from a handful

and up to O (102). Dense multivariate variables are the most suitable datastructure

for such variables. Similar to the use of univariate scalars, the call frequency for

these operations is substantial, and efficiency is important. Since the root of the per-

formance issues concerning the use of OOAD are similar for both sparse and dense

multivariates, we focus this discussion on dense problems.

Listing 2 provides a bare-bones definition of a dense Array data-type which is

used to represent the gradient. The constructor, which is invoked whenever an array

object is declared, dynamically allocates memory for, and initializes the array. In this

example, for the sake of simplicity, the memory allocation is achieved by direct system

calls which are costly operations. In the ADETL, all dynamic memory management

is provided by fit-for-purpose, hand-crafted memory allocators which typically amor-

tize allocation costs. Nevertheless, constructor calls are relatively costly operations

especially considering that they also involve an initialization loop. The destructor

frees memory back to the system and is evoked when

To examine the performance of OOAD, consider the simple dense multivariate AD

expression,

W = {f ∗ g + h, f ′ ∗ g + f ∗ g′ + h′} ,

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 42

Listing 2 A bare-bones implementation of an Array data-type.

class Array {

protected:

const int N;

double* p_data;

public:

// Constructor allocates memory dynamically

Array(int _N, double _val = 0.0) : N(_N)

{

p_data = new double [N];

for (int i=0; i < N; ++i) p_data[i] = _val;

}

// Destructor returns memory

~Array() { delete [] p_data; }

// Overloaded assignment operator

void operator= (const Array & _RHS)

{

for(int i = 0; i < N; ++i) p_data[i] = _RHS[i];

}

...

};

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 43

where the gradients, f ′, g′, and h′, are N -dimensional vectors. A hand coded imple-

mentation of a routine to evaluate and differentiate this expression would be,

w = f * g + h;

for (int i=0; i < N; ++i) {

Dw[i] = g * Df[i] + f * Dg[i] + Dh[i];

}

The statements produce efficient instructions involving one loop with a decent float-

ing point operation density over the required memory access demands and loop over-

head. Compare the semantics of using an OOAD expression to yield the same result;

W = F * G + H where the arguments are all of type ADscalar< Array >. Unfortu-

nately, the overhead of this syntactic convenience is substantial, and the deceivingly

simple OOAD statement generates code similar to,

// multiplication; F * G

double t1;

double *d_t1 = new double [N];

for (int i=0; i < N; ++i) d_t1[i] = 0.0;

t1 = F.value() * G.value();

for (int i=0; i < N; ++i)

d_t1[i] = G.value() * F.gradient[i] +

G.gradient[i] * F.value();

// addition; F * G + H

double t2;

double *d_t2 = new double [N];

for (int i=0; i < N; ++i) d_t2[i] = 0.0;

t2 = t1 + H.value();

for (int i=0; i < N; ++i)

d_t2[i] = d_t1[i] + H.gradient[i];

// Assignment operation

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 44

W.value() = t2;

for (int i=0; i < N; ++i) W.gradient[i] = d_t2[i];

// Clean-up temporaries

delete [] d_t2;

delete [] d_t1;

The example shows that the use of OOAD introduces severe inefficiencies in this

case. First, two temporary arrays need to be allocated, initialized, and de-allocated.

Second, a total of five loops are executed compared to just one. Moreover, the float-

ing point operation density within each loop is small. Finally, the number of indirect

addressing operations is almost double what it could be. Aside from the obvious

performance implications of the additional dynamic memory calls, Operator Over-

loading can cause memory to go out of cache sooner than it would otherwise. It

can also cause register spills due to the excessive counters and temporary resultants

that are required. It can also cause performance degradation by disrupting function

inlining since the instruction density is extended.

In order to overcome these performance issues, a completely different strategy is

required. Rather than directly evaluate expressions resulting in numerous loops, the

main idea is to instead build up a parse graph of the expression and to delay its

evaluation until the entire graph is available. At that point there is at least some

hope that the execution can occur in one fused-loop.

2.3 Lazy AD with Expression Templates

Direct evaluation leads to acceptable performance penalties for univariate problems.

The situation is far worse though for multivariate expressions. In such cases, the

pairwise evaluation process leads direct evaluation to generate excessive temporary

gradients and loops. The fundamental essence of the problem is that the deriva-

tive evaluation process occurs before the whole context of the expression has been

processed. As a first advancement from direct evaluation, we develop a framework

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 45

Figure 2.2: The basic Expression Templates resultant, T , contains the expression’s
value and the parse graph representation of its derivative.

that exploits the convenience of Operator Overloading while overcoming this ineffi-

ciency. This is accomplished by the use and extension of a generic metaprogramming

technique known as Expression Templates (ET) [45, 70, 42].

The basic idea is to design an OO implementation that generates graph datas-

tructures which encode the parse graph of the derivative, while directly evaluating

the value of the expression at hand. For example, consider the statement F ∗G+H

once again. Upon execution, we hope to generate the datastructure depicted in Fig-

ure 2.2. This implies that the derivative is not evaluated yet since it is not needed

so far. The latest point in the execution flow at which the derivative is required is

upon assignment of the expression to an ADscalar; W ← T . With ET, the derivative

evaluation is contained within the assignment operator of the gradient, and since the

entire parse graph is available, it is conceivable at least, that the computation can be

executed as efficiently as a hand-coded alternative.

As a design choice, the ADETL introduces another ADscalar type that has a

parse graph as its gradient. For example, the overloaded multiplication operator

becomes,

ET3 operator* (const ADscalar< ET1 > _A, const ADscalar< ET2 > _B)

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 46

where ET1 and ET2 are the sub-graph datastructures on the arguments, and ET3 is the

datatype of the product of the two sub-graphs. Note that it is the actual datatype

that encodes the parse graph. Next, we discuss the internal workings of how such

gradient expressions are built, followed by a presentation of how they are evaluated

for dense gradients and for sparse problems.

2.3.1 Building Expression Templates at compile time

The ET technique was first described by [70], and independently by [67], and in the

scientific computing context by [40] and [45]. To date, the major scientific computing

applications which capitalized on this technique are predominantly in the Linear Al-

gebra and other mid-layer generic data-type settings. It makes heavy use of the tem-

plates feature of the C++ language in order to eliminate the overhead of operator over-

loading on abstract data-types, and without obscuring notation. Production grade

codes include the Parallel Object Oriented Methods and Applications (POOMA)[42]

collection, the Matrix Template Library (MTL)[62], and the Blitz++[71, 69] vector

arithmetic library. These efforts are often credited for demonstrating the emergence

of the C++ programming language as a strong contender to Fortran in terms of

performance in scientific codes [39, 57, 68].

At the time of development of the ET technique however, compiler support and

debugging protocols for generic- and metaprogramming were limited. Only a handful

of compilers could pragmatically handle such code. In contrast, today, all of the

major popular optimizing compilers list pragmatic optimizations to compile heavily

generic code. Given the success of ET in these application areas, and the continually

improving compiler support, we seek to integrate the technique within an Operator

Overloading AD framework.

Perhaps the most performance critical aspect of the ET approach is to ensure

that the graph representation is lightweight enough to allow compilers to easily re-

place them with code that is as close as possible to a single hand written fused loop.

Subsequently, the graph cannot be built dynamically since the required additional

memory management and indirect addressing costs would be overwhelming. Rather,

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 47

Figure 2.3: The parse graph template type composition generated by an ET evalua-
tion of f ′ × g + f × g′ + h′.

the parse graph representation would ideally be encoded into a datatype that is de-

duced by the compiler. The ET technique is in essence a metaprogramming approach

that encodes the parse graph node by node into a datatype. To make the approach

more apparent, we walk-through an example.

Recall the AD expression,

F ×G+H = {f × g + h, f ′ × g + f × g′ + h′} ,

where the gradients, f ′, g′, and h′, are N -dimensional vectors. Using Array datas-

tructures to represent the gradient vectors, the gradient portion of the expression

could be implemented using the statement;

F.gradient() * G.value() + F.value() * G.gradient() + H.gradient().

In the ET approach, the operators in the above statement are overloaded to generate

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 48

a parse graph datatype that is built-up at compile-time along the pairwise evalua-

tion process. This is achieved by making the temporary storage resultants of each

operator to be a node in the graph. Figure 2.3 illustrates this process. In the figure,

the nodes T1, T2, T3, and T4 are the datatypes of the intermediate temporary resul-

tants. In terms of a sequential chain of events, the statement produces the following

instructions,

T1 t1(F.gradient(), G.value()); // f’ * g

T2 t2(F.value(), G.gradient()); // f * g’

T3 t3(t1, t2); // f’*g + f*g’

T4 t4(t3, H.gradient()); // f’*g + f*g’ + h’

where the lower case temporaries are the actual objects of each of the datatypes in

Figure 2.3. Notice, no evaluation of derivatives is performed yet. All that is executed

is a compile time deduction and runtime execution of a parse graph. Next, we walk

through the ET engine that generates ET parse graphs.

Each node in an ET graph is wrapped by a universal intermediary datatype

Xpr< N >. The use of this wrapper allows all nodes to be referred to generically

by parameterizing the internal details of the node with the template parameter N.

The Xpr< N > simply delegates all data query, access, and arithmetic operations to

the specific node datatype N which it wraps. A sample declaration of such a wrapper

node is,

template< typename N >

struct Xpr{

const N &m_node;

Xpr(const N & _node);

};

The declaration reveals a performance critical detail; the wrapper, and all other ET

graph datatypes store references or memory addresses of child nodes rather than

copies. This is a critical optimization since otherwise, the sequence of temporaries

allocated on the stack by an expression would grow in size recursively without an

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 49

upper bound. That could lead to disastrous bottlenecks and no compiler would have

any hope of optimizing away a bottomless recursion stack. The trade-off in this choice

is rather subtle. The ET graphs produced in this manner cannot be explicitly stored

for later use. This is because according to the standard, the lifetime of intermediate

node objects is the duration of the statement. After that point in the execution chain,

the addresses in memory become invalid and attempts to access that memory leads

to undefined behavior.

There are generally three types of internal detail node wrapped by an Xpr< N >

object:

1. Leaf nodes store a reference to one argument or operand within an arithmetic

expression. As the name suggests, such nodes are terminal leaves of an ET

parse graph. For the example depicted in Figure 2.3, all gradients and values

are represented by \Leaf< Array > and Leaf< double > types respectively.

2. Binary operators are overloaded to generate a BinOp< Left, Right, Op >

node. This node is a generic binary operation node, where the Left and Right

template parameters are the datatypes of the left and right arguments of the

operator, and the Op is a functor that applies a certain operation such as addi-

tion.

3. Similarly, unary operators are overloaded to generate a UnryOp< Arg, Op >

node, where Arg is the datatype of the operators argument, and Op is an en-

coding of the actual unary operation to be performed.

While the applicative functors that appear in binary and unary operation nodes

are datatypes, they never actually get instantiated, i.e., no stack memory is required

for such variables. Rather, they provide a generic service through a static routine

that has the appearance of a global function and the behavior of an inlined statement

as far as efficiency. As an example, consider an applicative addition functor;

template< typename T >

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 50

struct OpAdd{

static inline T apply(const T & _l, const T & _r)

{ return _l + _r; }

};

The final piece of a minimal implementation is the overloaded operators them-

selves which kick-off the sequential construction of the expression templates. There

are numerous technicalities involved in their definition, including the need for tem-

plate partial-specialization to account for all possible combinations of operand types;

an expression and an array, two arrays, etc. Pre-processor macros maybe applied to

automatically generate such templates prior to compile-time. For example, an over-

loaded addition operator that handles addition of a sub-expression node to a terminal

array, is,

template< typename L >

Xpr< XprBinOp< Xpr<L>, Leaf<Array>, OpAdd > >

operator+(const Xpr<L> &_l, const Array &_r)

{

return Xpr(XprBinOp(_l, _r, OpAdd));

}

};

With all the pieces in place, arithmetic expressions involving multivariate AD

scalars produce a temporary AD scalar that has an ET graph for a gradient. No eval-

uation takes place until it is needed; whenever an assignment operator is encountered.

At that point, the goal is to perform the gradient computation in one fused loop. The

technique to achieve this for dense multivariates follows directly from the standard

ET technique. On the other hand, sparse multivariates cannot operate in the same

way, and ADETL introduces a novel graph traversal algorithm to perform this. We

discuss the ET evaluation process for dense and sparse gradients independently.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 51

2.3.2 ET Evaluation; Dense Multivariates

ET graphs are built along the pairwise evaluation process of expressions involving

multivariate gradient datatypes. The evaluation of the expression is triggered by an

overloaded assignment operator. The goal of the evaluation process is to perform the

vector expression using one fused loop. For dense vector representations, this is turns

out to be both straightforward and a rather effective strategy.

At each iteration, 0 ≤ i < N , the overloaded version of the Array assignment

operator queries the root ET node for its ith entry and assigns it in place. Recall

that there are three types of nodes that make up an ET graph; Leaf nodes, binary

operators, and unary operator nodes. In the dense ET set-up, the actions which occur

when a node is queried for an entry depends on its type as follows.

1. Terminal leaf nodes referring to a gradient array return the ith component of

the gradient. On the other hand, terminal leaf nodes referring to a scalar return

the scalar itself regardless of the index i.

2. Binary operator nodes query the left and right child nodes for their ith entry

values, and then they perform the binary arithmetic operation and finally, they

return the result.

3. Unary operator nodes query the child node for its entry, perform the unary

operation on the result, and return to the caller.

The result is that each iteration of the fused assignment loop results in a reverse

traversal of the ET graph. We return to the example statement,

w’ = f’ * g + f * g’ + h’

Provided that an optimizing compiler is capable of eliminating the overhead of func-

tion calls, the instruction sequence generated by the iterative graph traversal process

is almost identical to that of a hand-crafted alternative. Assuming that binary opera-

tion nodes always query the left child first, it is straightforward to trace the execution

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 52

pipeline for the example at hand using Figure 2.3. In this case, each iteration of the

loop embedded in the assignment operator would perform the following instructions,

t1 = f’[i] * g

t2 = f * g’[i]

t3 = t1 + 2

t4 = t3 + h’[i]

w’[i] = t4

The graph construction phase of the ET framework is oblivious of the underlying

gradient datastructure. The evaluation process on the other hand inherently relies

on the underlying datastructure. In the example above, it is apparent that the dense

evaluation procedure relies on the indirect accessing property of dense arrays. The

ith entry is defined for leaf nodes, and subsequently, for all internal nodes as well.

Moreover, the length of the iteration is known prior to the evaluation of the expres-

sion. Sparse array data-types cannot be queried sequentially for elemental entries

since otherwise, all evaluation processes equate to dense ones involving logical zeros.

For these reasons, a further development is required in order to realize a sparse ET

evaluation framework.

2.3.3 ET Evaluation; Sparse Multivariates

Sparse gradients datastructures form the backbone of Reservoir Simulation Jacobian

evaluation routines. The ADETL provides a generic SparseVector< T > template

which is parameterized by its nonzero element type, T. The element type could be a

scalar, producing a point sparse vector, or a dense block, producing a block sparse

datastructure. The ET operator overloads described for dense arrays can also be used

for expression involving sparse gradients. Subsequently the build-up of ET graphs

with sparse leaves occurs in very much the same way as it does with dense expressions.

The exact function and contents of the three types of expression nodes however are

different to accommodate the sparse evaluation process.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 53

(a) Prolong Phase; nonzero entries of each ar-
gument are added into a zero initialized dense
buffer sequentially.

(b) Restrict Phase; the resultant dense buffer
turned into a sparse array.

Figure 2.4: An illustration of the two phases of an axpy routine to evaluate the sparse
vector expression y = X1 +X2.

The ET graphs provide a complete and simultaneous access to all arguments. The

possibility exists to compute the result of the expression using a one pass iteration

that minimizes the number of memory accesses, and branch logic evaluations, and

that introduces no dynamic memory needs.

Without the ET facility, traditional sparse computations involve at most two

sparse vector arguments. Multi-way computations (those involving multiple argu-

ments) are executed by repeating the two-way process several times over intermedi-

ate resultants in essentially a pairwise operator evaluation process. For example, the

axpy routine of the standard sparse Basic Linear Algebra Subprograms (BLAS)[26]

executes the mathematical expression ax + y where x and y are arrays and a is a

scalar. By using the routine repeatedly with y as the target, we can compute any

sparse vector linear combination y = a1x1 + . . . + akxk. To motivate the multi-way

sparse evaluation algorithm developed for the ADETL, we first recall the two standard

two-way combination algorithms.

Standard two-way sparse vector algorithms

The first algorithm is modeled after the most common sparse BLAS axpy implemen-

tation. The algorithm is a two stage process. In the first stage, sequentially, each

sparse array argument is added into a zero-initialized dense buffer. In the second

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 54

(a) Coinciding entries
are added. Both running
pointers are incremented.

(b) Entry with smaller col-
umn index is inserted and
its running pointer is in-
cremented (green) while the
other is not (red).

(c) Since one argument is
completely traversed, the
remaining entries in the
other argument are just
inserted.

Figure 2.5: An illustration of a one-pass routine to evaluate the sparse vector expres-
sion y = X1 +X2.

stage, the entire dense buffer is traversed to deduce non-zero entries and to thereby

produce a sparse resultant. This process is illustrated in Figure 2.4 for the sparse ex-

pression y = X1 +X2. It is easy to see that this algorithm performs poorly whenever

the dimension of the required enclosing dense buffer is very large compared to the

number of non-zero entries in the resultant. On the other hand, when that is not the

case, this algorithm is very effective as it uses heavier indirect addressing instead of

an embedded branch within the iteration.

The second algorithm is a one-pass approach that uses a running pointer to each

argument. Initially each of the two pointers is bound to the first non-zero entry of its

respective sparse vector. While both running pointers have not traversed the entire

vector, the following sequence of operations is performed. The column indices of the

two running pointers are compared. If the nonzero entry column indices are equal,

the two entries are operated on and inserted into the resultant. On the other hand, if

they are not equal, then the entry with the smaller column index is inserted, and its

running pointer only is advanced. At the end of the iteration, if one of the two sparse

arrays involves any remaining untraversed entries, they are simply inserted into the

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 55

resultant. Figure 2.5 illustrates this process for the problem of adding two sparse

arrays using this process.

With an ET graph on hand, all sparse vector arguments, and the arithmetic

operations to be performed on them are parsed and available simultaneously at run-

time. This introduces the possibility to extend two-way sparse vector algorithms onto

multi-way versions which can reduce the asymptotic number of branch comparisons

and associated memory reads. Such an extension would necessarily require the ET

nodes to now maintain more information regarding state. Moreover, since the axpy

approach is inherently serial, its fundamentally orthogonal to use with an ET graph.

The sparse ET algorithm developed for the ADETL extends the one-pass process to

a multi-way version.

ET multi-way sparse vector algorithms

The ADETL sparse ET evaluation algorithm exploits the availability of the parse-

graph at runtime in order to asymptotically reduce memory bandwidth requirements.

In particular, the ET graph generated by any expression that involves one or more

SparseVector< T >s maintains state information that is cached at every node. This

state information is initialized upon construction of the ET graph through the pairwise

evaluation process; a forward topological sweep. The ET graph nodes need to also

include additional logic as compared to the dense ET graph alternative. In particular,

the three types of nodes that make-up ET graphs are designed as follows.

1. Terminal leaf nodes of sparse vectors must maintain a running pointer the is

initialized to the sparse vectors first non-zero entry. Terminal leaves must also

determine whether they are active. Leaves are active provided there are any

remaining unprocessed non-zero entries.

2. Binary operator nodes maintain a current entry state. Such nodes can be

thought of as intermediate resultants of non-zero entries. Moreover binary nodes

need to be able deduce and set the activation of the two child nodes. A child

node is active if the column index of its current non-zero entry is the leading

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 56

column of the two.

3. Unary operator nodes maintain an intermediate temporary non-zero entry as

well as a active state label that is simply delegated to its child node.

Upon assignment, a single pass iteration is performed. At each iteration, two

reverse topological sweeps are executed. The first is an Analyze Phase that labels

the nodes in the graph as active or inactive. The goal of this labeling is to truncate

any branch or sub-graph that ultimately results in a trailing nonzero entry. This is

essentially the mechanism by which the number of index comparison operations is

reduced over a direct pairwise evaluation. The second sweep is an Advance Phase

whereby all active nodes are visited to evaluate their nonzero entry value, and to

update the running pointers of the active leaf nodes. This is a single pass process

much like the two-way one pass algorithm. The iteration continues so long as the

parent node is active.

Illustrative example

To illustrate the solution process conceptually, we proceed by tracing through the ET

evaluation process of a simple example. Suppose that a sparse AD scalar expression

requires the evaluation of the sparse gradient statement w = a+ b+ c+ d. The four

sparse gradient operands are a = (7, 0, 3), b = (2, 0, 6), c = (0, 4, 0), and d = (0, 0, 4).

The operands are represented by ADETL SparseVector< double > objects each of

which consists of two arrays of equal size. One array contains the column indices

of each non-zero entry, and the other array stores the corresponding values of the

entries. For example, the representation of a has a column index array (1, 3) and a

value array (7, 3).

Similar to the dense ET graph construction process, the parser processes the

sparse statement at compile-time and generates a topological sequence of the opera-

tions to be performed. When the SparseVector overloaded assignment operator is

encountered, three iterations are performed in this case. Each iteration executes an

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 57

(a) Advance 1: three index comparisons (b) Analyze 1: two leaves are incremented

(c) Advance 2: two index comparisons (d) Analyze 2: one leaf is incremented

(e) Advance 3: two index comparisons (f) Analyze 3: three leaves are incremented

Figure 2.6: Evaluation sequence of a hypothetical sparse ET graph with 4 arguments,
and a total of 3 logical nonzero entries. Red, thin arrows indicate branches of the
graph that are inactive. Green, thick arrows indicate active branches involved in the
current nonzero entry.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 58

Advance and an Analyze phase. The sequence of state snapshots along this process

are depicted by Figure 2.6. In the figure, the dotted curved arrows represent the four

running pointers to the expression operands. The solid arrows represent connections

amongst ET nodes. Red, thin arrows represent inactive connections while green, thick

arrows represent active ones. In the ET graph, there are three binary nodes, all of

which are addition nodes. The internal binary nodes maintain intermediate tempo-

rary states. That is, each node stores a column index and value of an intermediate

non-zero entry. Figures 2.6(a) and Figure 2.6(b) show the graph states during the

Advance and Analyze sweeps of the first iteration. Similarly, Figures 2.6(c) and Fig-

ures 2.6(d) correspond to the two sweeps of the second iteration, and Figures 2.6(e)

and Figures 2.6(f) to the third.

2.3.4 Summary

The compile time ET approach is applied to dense gradients within AD scalar ex-

pressions. For such dense problems, the ET approach eliminates all inefficiencies of

the DE OOAD alternative. One fused loop is executed without additional memory

transfer or floating point operation requirements. Moreover, the approach eliminates

all dynamic memory management needs for temporary intermediate results. The cost

of graph construction may be significant for deep expressions with short gradients.

Improved compiler optimizations, inlining in particular, may completely eliminate

this cost.

The ET approach to building expressions directly carries over to sparse problems.

The evaluation process however requires that nodes maintain additional storage and

perform branches with conditional logic on column indices. A practical implication

of this requirement is that optimizing compilers are far less likely to optimize away

intermediate quantities and function call costs. Moreover, owing to the parse graph

structure of ET graphs, axpy like algorithms are not readily applicable. Finally, unlike

the situation with medium to large sized dense arrays, it is more likely than not that

sparse arrays have few nonzero entries. Subsequently the relative cost of ET graph

construction becomes significant. These factors lead us to develop the final evolution

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 59

of ADETL’s AD core tailored to sparse problems.

2.4 Sparse Linear Combination Expressions

Despite its unique suitability for dense problems, two inherent aspects of compile

time ETs make their use for general sparse problems undesirable. First, in order to

accommodate a one-pass sparse algorithm, sparse ET nodes need to maintain state.

Subsequently, they can no longer be considered lightweight objects to be optimized

away by a compiler. This added cost suggests that there is little to no utility in compile

time expression building on the stack. Perhaps we can devise dynamic datastructures

that are not costly to build at runtime, and yet which can provide more flexibility. In

particular, the second inherent issue is that the ET graph is unstructured and het-

erogeneous, making it difficult to devise adapted BLAS-like axpy algorithms without

additional computation. A more flexible runtime alternative could afford a polymor-

phic environment in which expressions are built, analyzed, and the most appropriate

algorithm applied.

It is the pairwise evaluation process of AD scalar expressions that lead to the un-

structured, heterogeneous structure of ET graphs. Further insight into the resulting

gradient expressions is in order to realize alternate encodings. A basic result from

mathematics is that all unary operators including general composition result in gradi-

ents of the form cf , where c is a scalar constant, and f is a gradient vector. Moreover all

binary arithmetic operators result in gradients of the form c1f1 +c2f2. Since these two

forms are linear, and their composition preserves linearity, every AD gradient expres-

sion can be reduced to a linear combination of gradients c1f1 + . . .+ ckfk. Specifically,

this is achieved by distribution; multiplying scalars through the entire expression. As

an example of this, consider the AD scalar expression W = exp(F ∗ G + H). The

gradient portion of this expression is,

w′ = e(fg+h) (gf ′ + fg′ + h′)

= c1.f
′ + c2.g

′ + c3.h
′,

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 60

Figure 2.7: An illustration of an SPLC expression attached to the result of an AD
scalar expression.

where,

c3 = e(fg+h),

c2 = c3 ∗ f, and,

c1 = c3 ∗ g.

The fact that multiplying out gradient expressions always leads to SParse Linear

Combinations (SPLC) is a useful property. This is because SPLC expressions always

produce balanced binary parse graphs and they can also always be represented by a

linear list of coefficients and corresponding gradients. ADETL uses a runtime SPLC

expression mechanism as a default for all sparse gradient operations. Returning to

the example expression exp(F ∗G+H), suppose that all three arguments are of type

ADscalar< T > where T is some sparse vector datastructure. As illustrated in Fig-

ure 2.7, the result of the statement is an AD scalar whose gradient is a SPLC_Xpr< T >

datatype. This datatype is no more than a list of coefficient and running pointer pairs

that encodes the SPLC expression to be performed upon assignment. Note that unlike

ET expressions, the runtime SPLC expression is not embedded within the datatype

itself. Instead, SPLC expressions are always of type SPLC_Xpr< T >, regardless of

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 61

the operations to be performed or the number of arguments involved.

One positive consequence of this is that the overloaded AD scalar operators do not

require metaprogramming type traits promotion engines. For example, to overload

the multiplication operator for two sparse AD scalar arguments, the header is simply,

template< typename T >

ADscalar< SPLC_Xpr< T > > operator* (const &ADscalar< T > _A,

const &ADscalar< T > _B)

On the other, hand a potentially disastrous drawback to the runtime nature of

SPLC expressions is construction cost. While each element in the list is small; a

floating point number and a memory address, during the course of a single residual

evaluation routine, millions of such objects may be created and destroyed. Next we

develop the strategies brought by the ADETL in order to avoid the potential pitfalls

of computationally expensive expression creation.

2.4.1 Building and destroying SPLC expressions dynamically

An important consideration is the choice of datastructure that is used to store and rep-

resent runtime SPLC expressions. Owing to their efficiency of concatenation ADETL

uses a singly linked list datastructure for SPLC expressions. Each node in the list

represents one coefficient and vector pair within the SPLC. The evaluation of the

expression consists of adding up these scalar-vector products. Note that the coeffi-

cients are not directly multiplied into the arguments as the expression is built since

that would require that each node maintain a new copy of the sparse vector which is

obviously very costly.

Each node in the linked list stores a floating point coefficient, a pointer to a

sparse vector argument, and a pointer to the next node in the list. The pointer in

the terminal node of the list is made to point to the null memory address. There are

three fundamental building blocks to any SPLC expression; the multiplication of a

scalar and a sparse vector, the multiplication of a scalar and a sub-expression, and

the addition of two sub-expression each containing one or more terms. Only in the

first situation is it ever necessary to allocate memory dynamically for a new node.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 62

Since the elements of SPLC expressions are allocated dynamically, their lifespan needs

to be controlled explicitly, and nodes can be made to persist beyond a statement’s

scope. For this reason, after evaluation, SPLC expressions need to be destroyed and

allocated memory returned to its origin.

Figures 2.8(a) through 2.8(c) illustrate the three overloaded operations which

constitute the building blocks of any SPLC. The scalar-expression multiply (Fig-

ure 2.8(b)) and expression-expression addition (Figure 2.8(c)) operations require very

little overhead compared to a hand crafted evaluation routine. In particular, on top

of floating point multiplications which are a part of the evaluation, the multiplication

requires the overhead of a number of indirect references to traverse the SPLC list from

head to tail. The addition process depicted in Figure 2.8(c), requires the overhead

of two pointer operations. On the other hand, the expression node allocation process

depicted in Figure 2.8(a) can cause excessive performance degradation depending on

what memory allocator is used. The number of such operations in a given expression

is equal to the number of sparse gradient arguments. This means that for the average

simulator code, the memory allocator can be required to provide nodes several orders

of magnitude times the number of equations or indpendent unknowns.

SPLC Memory Allocators

Allocators are abstractions that manage requests for dynamic allocation and dealloca-

tion of memory throughout the life of a program. By providing a universal interface,

the inner workings of allocators are abstracted, allowing programmers to use them in-

terchangeably. There are numerous generic memory models that range from wrappers

around direct system calls to thread-safe shared memory models. As a general rule

of thumb, whenever expert knowledge on a particular application’s memory needs

and access patterns is available, the use of a specialized or custom allocator may

substantially improve the performance or memory usage, or both, of the program.

The ADETL SPLC expression building process requires the allocation of as many

expression nodes as there are arguments in gradient expression. Beyond the scope of

a specific statement in which SPLC expressions are built, the small expression node

objects are no longer required.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 63

(a) The only overloaded SPLC operator that requires dynamic memory al-
location is a constant times a sparse vector, c.v

(b) Multiplication of a constant and an splc sub-expression results in a single
traversal of the list, multiplying the constant out into the expression weights.

(c) Adding two sub-expressions with one or more entries requires the con-
nection of one sub-expression’s tail to the other head.

Figure 2.8: SPLC expressions are represented by a one-directional linked list. There
are three fundamental operations the form an SPLC expression.

CHAPTER 2. THE AD CORE; ITS DESIGN AND EVOLUTION 64

The ADETL includes its own custom allocator component. While the C++ Stan-

dard Template Library provides general-purpose allocators there are many scenarios

using the ADETL including SPLC expression building where customized allocators

are crucial. These scenarios include improving performance of allocations and deallo-

cations by using memory pools, and encapsulating access to different types of memory,

like shared memory or garbage-collected memory. Specifically with regards to SPLC

expression construction, many frequent allocations of small amounts of memory are

required, and the use of tailor-purpose memory pools is in order. As a consequence,

higher level ADETL memory allocators are non-portable; that is, they maintain state,

and are therefore not to be used interchangeably with STL allocators for example.

Memory pool models amortize the cost of memory allocation by pre-allocating a

cache of memory at the start of a simulation. When some memory is needed, it is

handed out by the pool, and if the pool happens to be exhausted, then it is expanded.

Chapter 3

Using and extending the ADETL

The ADETL is a generic extensible library written in the C++ language. At the

time of writing, the library requires 6 MB of disk space. Figure 3.1 depicts a con-

ceptual layout of the library and its layered architecture. Software within each layer

implements concepts, objects, or algorithms at a certain level of abstractness and

complexity. Programming with higher levels of the ADETL requires less computer

programming literacy and more Reservoir Simulation domain skills. On the other

hand, programming with lower layers requires more awareness of the target hardware

platform features and low-level programming detail.

The ADETL is designed to support a combinatorial level of flexibility and exten-

sibility. Within each layer, objects may have one or more template parameters. By

specifying a combination of non-default choices for any or all of these parameters,

the user can toggle the make-up of the code that is compiled. Extending the library

can be achieved by implementing additional variations of the various parameter op-

tions so long as the additions satisfy the parameter’s required concept criteria. The

ADETL uses this form of compile-time polymorphism to allow users of higher levels

to produce platform specific, performance-tuned code with little or no knowledge of

hardware-specific coding optimizations. Rather, the user can simply select what is

best and does not have to worry about how it is implemented or how it evolves.

Figure 3.1 illustrates the multi-layered structure of the library. We introduce the

usage semantics and the concept parameter option spaces within each layer proceeding

65

CHAPTER 3. USING AND EXTENDING THE ADETL 66

Figure 3.1: Overview of the four layer architecture of the ADETL.

CHAPTER 3. USING AND EXTENDING THE ADETL 67

in a top-down order.

3.1 Automatic Variable Set Objects AVSO.

In reservoir simulator design, two important considerations are the choice of indepen-

dent variables and the way that they are ordered. There is interest in the ability to

rapidly implement simulators using different variable sets and orderings and to use

them interchangeably. Moreover, different physical models typically involve different

variables. Subsequently there is also interest in utilities that facilitate the incor-

poration of new variables and new models. Without programming abstractions to

generically address all aspects of simulation variable sets, it is unlikely to achieve the

kind of design flexibility and extendability that is saught today. Moreover, without

AD, the process of achieving a suitably high-level abstraction is also intractable; the

notions of ordering and their impact on sparsity are inherently very much coupled.

This layer of the ADETL builds on top of its sparsity detecting AD capability in order

to provide a total abstraction of the notion of independent variables. The Automatic

Variable Set Object (AVSO) layer of the ADETL provides programming semantics

and functionality that allow users to configure, declare, operate, and manipulate nu-

merical unknowns without the need for any low-level programming and with complete

plug-and-play flexibility.

To appreciate some of the challenging design problems solved by the AVSO layer,

consider the task of adding thermal effects into an object-oriented compositional

simulator such as GPRS [13]. The first step could be to allocate sufficient working

space to hold temperature and the other new thermal intermediate variables as well

as their derivatives. In GPRS, this can be done by modifying the DataPool class.

Immediately, the first bottleneck arises; the mathematical ordering of variables needs

to be explicitly mapped on to the new layout of memory in the DataPool, and all

indirect addressing code needs to be altered in order to accommodate. These changes

can be extensive. Moreover, since the changes proliferate throughout the gut of the

discretization component with a fine level of granularity, there is ample potential

for subtle computer programming logic errors. After space is allocated for the new

CHAPTER 3. USING AND EXTENDING THE ADETL 68

variables and all indexing and indirect referencing issues are resolved, the next change

is to modify the memory layout of the residual vector and the Jacobian matrix to

accommodate the temperature equation. This introduces further indirect addressing

issues which need to be addressed. The situation is further exacerbated when the

variable switching logic needs to be modified accoridingly in order to evaluate a

consistent residual vector and Jacobian matrix. Without AD, it is necessary for

the programmer to explicitly write out partial derivatives and insert them within the

appropriate Jacobian entries. Once again, it becomes unavoidable to have to worry

about granular context specific modifications, and to sift out any programming logic

errors.

The kind of flexibility that the ADETL delivers extends beyond making it almost

effortless to introduce new variables, equations, or alignments. Using a declarative

syntax, the user can also be oblivious of any indirect mapping changes and the under-

lying memory layout details. Using the AVSO layer, any variable switching strategy

can used simply by declaring it as a simulation parameter. No indexing changes to

the size or structure of the Jacobian need to be implemented. They are taken care of

automatically behind the scenes.

The main construct in the AVSO collection is the template,

VariableSet< ADCollection, VariableOrdering, VariableActivation >,

which requires concrete types for three concepts; ADCollection is the concept for

an underlying AD data structure and including its memory layout, VariableOrder-

ing is a record of the mathematical ordering of unknowns in a given context, and

VariableActivation is a specification of when and which variables should be active

(independent) or inactive (dependent). To instantiate a VariableSet object, a con-

crete type needs to be selected for each of these concepts. There are a number of

different concrete types that are currently available for use. Moreover, users who need

new functionality can simply extend the library by implementing the desired concrete

type so long as the implementation satisfies the set concept criteria. The concept cri-

teria ensure plug-and-play integration and compatibility with other concepts. For

example, one can choose independently choose to use a distributed memory model,

an ordering such as the one in GPRS, and a custom variable switching schedule,

CHAPTER 3. USING AND EXTENDING THE ADETL 69

without having to worry about the dependencies across concepts. Before presenting

usage examples, we discuss the three concepts, their criteria for extensions, and the

currently existing options.

3.1.1 ADCollection concept and types.

The motivation behind this concept is to abstract the physical memory layout, its

management, and its indirect addressing from the mathematical ordering of vari-

ables and equation alignment. This design choice is made recognizing today’s rapidly

changing computer hardware scene. Memory management and access are two criti-

cal performance concerns, and optimal implementation techniques vary dramatically

across architectures. For example, memory optimization for serial or multi-core cache-

oriented machines is not suitable for massively parallel distributed architectures.

Concept requirements. Suitable types must, from the perspective of an in-

terface, consist of a collection of contiguously enumerable and accessible AD scalar

types. This requirement does not preclude types that store variables in non-coherent

buffers, so long as they provide an interface that makes it look like they do. Such

types are implemented in the second layer of ADETL under collections. The concept

requirements for the scalar entry data types are that they support ADETL value and

gradient access interfaces. No other criteria on memory allocation or coherency are

required, and such things are all left to the will of the user.

Currently available examples. The second layer of the ADETL implements

policy-based collections with the ADvector template. The default is to use dynamic

memory allocators for coherent buffers ordered in a stride-blocking fashion. This ob-

ject can be declared by leaving its template parameters unspecified; For example,

ADvector<> X_unknowns();

declares a dynamically allocated array of AD scalars, using coherent memory, and

a stride oriented ordering.

CHAPTER 3. USING AND EXTENDING THE ADETL 70

3.1.2 VariableOrdering concept and types.

Formally, we define a set of independent variables as,

• a contiguously enumerable collection of scalar unknowns, and,

• a collection with the square identity matrix as its Jacobian.

In Reservoir Simulation, there are numerous options for the choice of variables, as

well as for how they are ordered. The ordering of the scalars determines the column

permutation structure of the Jacobian matrix of any multivariate function including

the residual. The specific choice of variables and their ordering heavily influences the

computational efficiency of the linear solution process. Moreover, many formulations

involve dynamic variable switching, where the Jacobian of the identity operation

changes size. This further adds to the complexity of implementing flexible simulation

codes. With the introduction of AD and an ability to specify the differentiation seed

(the partial derivative of an unknown with respect to itself), it is paramount for

the ADETL to provide high-level facilities that automatically manage variable sets

behind the scenes. The VariableOrdering concept abstracts the notion of automatic

variable ordering and enforces a uniform indirect addressing map, thereby eliminating

the burden of all low-level programming semantics. The VariableOrdering concept

sets a fixed standard for the automatic activation and enumeration of the derivative

seed of any declared dynamic variable set. One can set-up and instantiate any variable

set with any variable partitioning or ordering. The activation and deactivation of

variables for differentiation are handled automatically.

Concept requirements. As discussed, ADETL expresses any Reservoir Simula-

tion choice of variable and equation alignment using an unstructured three-dimensional

indexing system. The first index enumerates levels; A level is defined as a contiguously

enumerated collection of tiles. Each tile is a collection of one or more scalar variables.

The VariableOrdering concept requirements are twofold. The first requirement is

that objects provide an interface for the client to specify any three-dimensional un-

structured ordering. The second requirement is that objects provide an interface that

responds to queries on structure. These requirements leave the VariableOrdering

CHAPTER 3. USING AND EXTENDING THE ADETL 71

concept rather extensible; in one implementation, access can be organized to visit a

space-filling curve, and in the next, it might be organized by visiting active variables

only.

Currently available examples. The ADETL classes to instantiate in order to

specify and record a specific ordering is MultiLevelRecord. Additionally, in order to

facilitate working with single level variable sets, the class LevelRecord may also be

used, eliminating the overhead of accessing levels in a single level setting.

Example 1. Black oil variables A typical choice and ordering of numerical unknowns

for a two-phase oil and water model is to enumerate primary variables first, followed

by well-pressure variables listed for each segment, one well at a time. The primary

variables are listed one grid block at a time, and for each block, the typical ordering is

pressure followed by saturation. For example for a problem with Nb grid blocks, and

two wells with Ns segments each, this ordering becomes,

P1, S1, . . . , PNb
, SNb

, Pw1
1, . . . , Pw

1
Ns
, Pw2

1, . . . , Pw
2
Ns
. (3.1.1)

To model this ordering using the three-dimensional indexing concept, we need to

specify:

1. That there are three levels; Primary variables, well pressures for the first well,

and those for the second.

2. The number of tiles in each level, which for the concrete example above is Nb

for the first level, Ns for the second, and Ns for the third as well.

3. The number of variables in each tile in each level, which for this example is two,

one, and one.

The corresponding MultiLevelRecord object can be declared by,

MultiLevelRecord BlackOilSetup(3, [Nb, Ns, Ns], [2,1,1,]);

CHAPTER 3. USING AND EXTENDING THE ADETL 72

3.1.3 VariableActivation concept and types.

Variable switching is the process of selecting the appropriate minimal set of unknowns

such that a physical model is consistent and uniquely determinate. In Reservoir Sim-

ulation, variable switching is used in various formulations of multiphase flow models

in which phases may appear or disappear. Moreover, it often occurs that the indepen-

dent variable sets for different states have a differing dimensionality. Subsequently,

the dimensionality of the residual vector and the Jacobian matrix can change also.

A similar process is observed in dynamically implicit discretizations such the Adap-

tive Implicit Method (AIM). With approaches such as AIM, the independent variable

set in a block within a level may change to reflect different implicitness treatments

of the individual variables. When a variable is required to be implicit, it becomes

active from the AD perspective, and vice versa. The VariableActivation concept

abstracts this process of enacting and querying the activation of individual variables

independently tile by tile, and level by level. In so doing, the concept provides con-

crete implementations that automatically take care of rearranging column structure

and enumeration of variables.

Concept requirements. According to the VariableOrdering unstructured

three-dimensional structure, each tile in a given level lists a contiguous set of un-

knowns. The concept requires that this be a list of the union of all sets of possibly

active unknowns across all states without duplication. The phase and/or implicitness

states need to be associated with unique tags which may be of any data type. The last

requirement is that implementations support a table that indicates which unknowns

are active for each state tag.

Currently available examples. The only currently available object is of the

2DStatusTable class. This implementation provides an interface to query structural

information regarding a status tag associated with any level. This structural informa-

tion is used by the VariableSet object to automatically effect status changes. The

information consists of a boolean list of active variables for each tag, as well as the

number of active and inactive unknowns. Inversely, the object may also be queried

for a list of the state tags for which a specific variable is active.

CHAPTER 3. USING AND EXTENDING THE ADETL 73

Example 2. Three-phase compositional Natural Variables Consider a three-phase

four-component isothermal problem that is to be modeled using the Natural Variables.

In the formulation, the primary variables in each grid-block depend on the phase-state

of the block. Supposing that this setup is described by Table 3.1 below.

State P So Sg XC1
g

Oil, Water x x

Oil, Gas x x x

Three Phase x x x x

Table 3.1: A hypothetical set of primary variables for a three-phase problem. A check
(x) marks an active independent unknown.

A 2DStatusTable object supporting this setup can be declared using code Listing 3.

The last two lines of the listing illustrate some query functionality.

Listing 3 Declaring a Natural Variable activation setup using the ADETL.
int NumberOfVariables = 4;

int NumberOfStates = 3;

int StateTags[] = { 1, 2, 3 }; \\ OW, OG, OWG

bool StateActivations[] = { 1, 1, 0, 0,

1, 1, 0, 1,

1, 1, 1, 1 };

2DStatusTable<int> NaturalVariables(NumberOfVariables,

NumberOfStates,

StateTags,

StateActivations);

\\ Query number of active variables for OG state

NaturalVariables.NumberActive(2); \\ returns 3

\\ Query whether Sg is active for the OG state

NaturalVariables.IsActive(2, 3); \\ returns false

CHAPTER 3. USING AND EXTENDING THE ADETL 74

3.1.4 A complete AVSO VariableSet usage example.

In this example, we walk through the process of developing a simulation residual

and Jacobian code to model a three phase compositional process. The focus is on

first showing how to use the AVSO layer, and then to show how one can change the

formulation.

For the sake of clarity, we restrict attention to the three-phase, four component

model described in Example 2. We assume there is one injection well operating under

a rate constraint. We aim to use the Natural Variables initially, and we choose the

primary set as P , So, Sg, and XC1
g . The secondary set consists of the variables XC2

o ,

Sw, XC2
g , XC1

o , and the well, which is completed in one grid-block, is associated with

a single well-pressure unknown, Pw.

The first step is to declare an AD VariableSet. To do this, we need to select

concrete types for three concepts. For the ADCollection concept, we choose the

ADETL default which is the coherent dynamically allocated AD array, ADvector<

>. Next, we specify the logical ordering of unknowns using the following declaration

for a MultiLevelRecord,

MultiLevelRecord NaturalOrderingSetup(3, [Nb, Nb, 1], [4,4,1,]);

The declaration parameters in this statement specify that there are three levels. In

both the primary and secondary levels, there are Nb tiles, and in the well completion

level, there is only one tile. The third parameter is a list of the number of variables

to be stored in the tiles of each level.

Next, we need to specify a formulation strategy for each level. For the primary

variables, we use the Natural Variables strategy described in Listing 3. The secondary

variables in this example require no variable switching and are always treated implic-

itly, and so it is appropriate to use the pre-built AVSO element NoSwitchingPolicy as

the concrete type. The activation of the well variable depends on the well-constraint,

and may be switched from a variable with fixed flow rate, to a constant with a fixed

BHP. To model this, we declare a 2DStatusTable using Listing 4.

CHAPTER 3. USING AND EXTENDING THE ADETL 75

Listing 4 Declaring an well-constraint variable activation setup.
int NumberOfVariables = 1;

int NumberOfStates = 2;

int StateTags[] = { 1, 2 }; \\ RATE, BHP

bool StateActivations[] = { 1, 0 };

2DStatusTable<int> WellVariables(NumberOfVariables, NumberOfStates,

StateTags, StateActivations);

Listing 5 provides an implementation that declares an automatic variable set. The

Listing also illustrates several functionalities such as variable access and modification

and cell status changes.

Listing 5 Declaring an independent set.
VariableSet< ADvector<>,

MultiLevelRecord,

2DStatusTable<int> > X(NaturalOrderingSetup,

[NaturalVariables,

NoSwitchingPolicy,

WellVariables]);

int block_number = 100;

int primary = 1;

int secondary = 2;

int pressure = 1;

// can access and modify variables using natural semantics

X[primary][block_number][pressure] = 100.0;

// automatically affect appropriate AD variable activations

X[secondary][block_number].set_status(2);

Perhaps the most important functionality of the VariableSet construct is its

interface for setting the variable activation state of any given simulation grid block

and any variable level. Changes to the status of a cell can have repercussions on all

subsequent entries in the independent set. To see this, consider the scenario illustrated

in Figure 3.2. In this scenario, the water phase in the first cell of the problem

CHAPTER 3. USING AND EXTENDING THE ADETL 76

disappears. To affect this change, it is necessary to set the variable state in the first

tile of the first level. Since now there is one less independent variable, the ordering

of unknowns changes in every following entry. Figure 3.3 illustrates this process in

terms of the Jacobian matrix of the unknowns. As introduced, AD augments all

data with its derivative, and so, variable set changes need to be reflected in the seed

Jacobian matrix of the unknowns. The actual implementation for achieving this is left

to the implementer of the VariableSet concept. In the current implementation, state

changes do not involve any dynamic memory management needs. The implementation

however does require one indirect addressing and assignment for every effected entry.

For this reason, it may be necessary for computational efficiency to devise other

implementations that scale in a sub-linear manner. This will be particularly important

for large-scale problems on cache limited machines where the number of register loads

and stores are critical.

Figure 3.2: A conceptual view of the way ADETL treats variable switching.

CHAPTER 3. USING AND EXTENDING THE ADETL 77

Figure 3.3: ADETL treats variable switching by modifying the sparse Jacobian matrix
of the unknowns.

3.2 Automatically differentiable variable data types

The second layer of the ADETL provides various Automatically Differentiable data-

types which can be used to evaluate and store nonlinear terms and equations. Math-

ematically, any generally nonlinear mapping is

The data-types are organized into two concepts. The first is the concept of an

AD scalar variable and the second is an AD collection. This choice of distinctly

separating collections from scalars is common to generic programming philosophies

primarily because it allows for an abstraction of buffer memory management from

scalar algebra and in this case, from AD functionality as well. A scalar can be used

to represent anything from a real number to the result of a multivariate map with

a target in the real numbers. Collections are sets of scalars and a collection can be

used to represent vector quantities as well as sets of nonlinear multivariate equations

or vector functions.

CHAPTER 3. USING AND EXTENDING THE ADETL 78

3.2.1 The ADCollection concept.

In Generic Programming, a collection is defined as a data-structure of one or more

scalars. Each scalar entry in a collection can only be referred to via a reference

to the collection itself. Examples of collections are arrays, queues, and associative

maps such as dictionaries. The C++ Standard Template Library (STL) provides

implementations of several collection containers, giving the developer access to fast

and efficient collections that are type safe and easy to use. Moreover, the STL col-

lections are generic implementations; They abstract both memory management and

indirect addressing, and separate these from the specifics of the scalar element data

type. Moreover, in the case of associative maps, they also abstract the associativity

relation. For the purpose of constructing discretization codes, the most important

collections are sequential random access containers, and more specifically arrays and

vectors. The STL design choice for implementing sequential collections is to use

templates with two parameters. For example, the popular STL vector container,

std::vector< T, A >, requires two template parameters. The first template pa-

rameter, T, is the concrete type of scalar element to be stored, and the second pa-

rameter, A, is the type of memory allocator to be used.

The collections offered by the STL have withstood the test of time, and have

proven their worth through pervasive use by C++ programmers. Nevertheless, for

the purpose of AD collections, the STL containers leave two properties to be desired.

Firstly, while the dimension of an AD vector dictates the row dimension of its Jaco-

bian matrix, the number of unknowns or independent variables in the differentiation

context dictates the column dimension of the Jacobian. In order to allow ADETL

users to program with the more natural two-dimensional semantics of Linear Algebra,

ADCollections must implement AD specific behavior pertaining to the collection as

a whole. In a sense, this amounts to designing collections so that they can act and

appear as both the residual vector and the Jacobian matrix depending on the user’s

interests. The second feature, is an efficiency issue. The STL collections are generic,

and they apply the most general, yet least-efficient variable instantiation and initial-

ization mechanisms. The TR1 of the C++ language standards committee has long

recognized this aspect of STL collection as a potential drawback to using them in

CHAPTER 3. USING AND EXTENDING THE ADETL 79

scientific computing. ADETL collections address this by introducing an additional

template parameter to allow the user to fine tune memory manipulator choices.

Example 3. Using STL collections.

To appreciate the importance of the ADCollections, consider the alternative of using

a STL vector to store the AD scalar types representing the discrete residual and its

Jacobian. We walk through the process of declaring such a structure, performing a

discretization operation, and finally, accessing information on the Jacobian matrix.

Listing 6 shows the semantics involved in doing this. The first statement declares

the data-structure, allocates memory for it, and initializes all entries. In the decla-

ration, the allocator template parameter, A, is not explicitly specified, signaling the

compiler to use the STL default memory allocation policy. Moreover, the programmer

has no control over how the variables are initialized. After performing a standard

connection-list pressure differencing, the programmer needs to involve herself with

low-level, vector related semantics, in order to determine the column dimension of

the Jacobian matrix. Using ADETL collections, we provide interfaces such as the

last statement in the listing.

Figure 3.4 shows the taxonomy chart of ADCollections and the currently imple-

mented types. The collections are divided into two broad categories. The first, is

collections that are to be allocated on the stack memory, requiring a fixed length that

is specified at compile-time. The second category are collections that are allocated

dynamically on the heap. Dynamic collections are subdivided into those that are

fixed in length albeit at runtime, and those that may be re-sized.

The stack-based container ADStackArray< int LENGTH, ElemType > is a wrap-

per around a built-in C++ array. The length of the array is specified as the first

template parameter, and the concrete ADETL AD scalar element type as the second

parameter. Stack arrays are designed for use when small arrays are required.

The ADarray< ElemType, Allocator, Manipulator > template class is a dy-

namically allocated, fixed size array. The length of the array may be specified at run-

time or compile-time, but once it is specified, it cannot be changed. The implications

of this on AD is that the row dimension of the Jacobian is guaranteed to be fixed,

CHAPTER 3. USING AND EXTENDING THE ADETL 80

Listing 6 Using ADETL with STL collection containers requires low-level awkward
semantics.
// Declare an STL vector of 100 AD variables

// The STL will run 100 constructor calls even though

// ADscalars need not be initialized yet

std::vector< ADETL::ADscalar< > > discrete_problem(100);

...

// Perform some computations

for (cell_id = 0; cell_id < 100; ++cell_id)

{

int left_id = connection_list[cell_id].left;

int right_id = connection_list[cell_id].right;

ADETL::ADscalar< > K = connection_list[cell_id].transmissibility;

discrete_problem[cell_id] = K * (pressure[right_id] -

pressure[left_id]);

}

// Awkward low-level semantics to query the

// column dimension of the Jacobian matrix

int jacobian_col_dim = -1;

for (int i=0; i < 100; ++i)

{

int row_col_d = discrete_problem[i].gradient().back().col_index();

if (row_col_d > jacobian_col_dim)

jacobian_column_dim = row_col_d;

}

// We would prefer semantics that are natural

// when talking about Jacobians

int jacobian_col_dim = discrete_problem.column_dim();

CHAPTER 3. USING AND EXTENDING THE ADETL 81

Figure 3.4: Taxonomy chart and examples of collection datastructures that are avail-
able through the ADETL.

CHAPTER 3. USING AND EXTENDING THE ADETL 82

and the implementation of this container can take advantage of this to attain better

efficiency.

The most flexible collection data structure is the ADvector< ElemType, Allo-

cator, Manipulator > template class. It is dynamically allocated and re-sizable at

runtime.

Chapter 4

ADETL Simulators and

computational examples

The inception of the ADETL spurred an initiative to develop a general-purpose large-

scale reservoir simulator; ADGPRS. The simulator is to use the ADETL as its ex-

clusive source of datastructures, active and otherwise. Empowered with the ADETL

as its building block for all formulation, discretization, and linearization models, the

simulator promises to deliver new kinds of flexibility and productivity to the finger-

tips of the simulation research community. With the introduction of the ADETL,

ADGPRS departs from the model of abstraction as a means to divide and conquer,

and arrives at the model of abstraction from within. The ADETL provides a midlayer

generic library that implements a general purpose variable set model. ADGPRS uses

the ADETL to abstract completely the notions of formulation and variable switching

strategies. Moreover, all sparse analytical Jacobian matrices are evaluated automati-

cally behind the scenes. Object Oriented runtime polymorphism is factored away from

the inner trenches of formulation and linearization routines in favor of ADETL’s more

efficient and symantically natural generic alternatives.

Researchers can work with ADGPRS using domain specific natural language se-

mantics to play with new physical models, formulations, and discretization techniques

all the while having the benefits of a large scale robust simulator. Moreover since the

ADETL provides all datastructures for ADGPRS, the simulator is instantaneously

83

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 84

generic with regards to hardware architecture specializations. Primitive ADETL con-

structs provide iterators and memory models which can be switched out at will for

various alternate implementations without needing to alter any higher level code.

Moreover ADGPRS is truly generic with respect to formulation. Variable switching,

ordering, and alignments can be specified in a parameter file. There is no need for

any manual analysis and implementation of permutation or transformation routines.

Finally, the ADGPRS is well on its way to providing the first reported simulator suite

that operates under a one-code, many executable system.

4.1 So, what is the overhead of this abstraction?

In general, it is difficult to accurately forecast the anticipated computational over-

head of using the ADETL. This is simply because an objective answer is bound to be

application and context specific. Moreover, across a wide spectrum of situations or

applications, the overhead can vary dramatically. For these reasons, we answer the

question at hand by providing an empirical characterization of the overhead specif-

ically for the use of the ADETL to develop the large scale compositional simulator

ADGPRS.

We assess the computational overhead of using the ADETL by comparing em-

pirical runtime data generated by ADGPRS and GPRS for a suite of benchmark

problems. The original GPRS code [14, 13] is an Object Oriented simulator written

in the C++ language. Its formulation and linearization core is based on hand-coded

derivatives and sparse Jacobian matrix construction routines. The variable switching,

implicitness level, and alternate formulation capabilities are all based on a hand-coded

system that uses a base model along with permutation, combination, and elimination

algebraic routines to arrive at the target alternate systems. Since its first release in

1999, the GPRS has been expanded and maintained without fundamental changes

to the discretization skeletal infrastructure. The GPRS project led to numerous well

received advances in the areas of advanced process modelling such as chemically reac-

tive compositional flows, smart well and facilities modelling, and in optmization and

control.

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 85

The objectivity of such comparisons is subject to numerous factors. Amongst the

more significant are the following:

• ADGPRS is developed by a team that is familiar with the internal workings of

GPRS. While the developer of the ADETL provides input in the form of advice,

there was no direct involvement in decisions such as the choice of datastructures

or memory management. Subsequently, it is fair to assume that anyone without

expert knowledge of the ADETL and with a fair amount of domain expertise

can expect to see similar results.

• ADGPRS uses one AD datatype. That is AD-types with block sparse gradi-

ents and SPLC expressions are employed regardless of the underlying derivative

structure or call frequency. As will be more clear from the test suite results,

this implies that with a more judicial use of the ADETL, the performance of

ADGPRS can be improved relative to GPRS.

• The templates facility is used to a large degree in order to allow routine calls

that involve no derivatives to be executed using built-in floating point datatypes

rather than ADETL types. This means that we are not highlighting the over-

head of using the ADETL for computations where no derivatives are necessary.

• In the examples presented, only 35% of the ADETL was used in the execution

chain. Subsequently, this implies that the comparison results in these examples

do not characterize the entire library. Rather, they provide empirical results for

the use of certain portions of the library.

• The same compiler and build environment were used to obtain executables of

either simulator. The empirical data used in the comparisons were obtained on

a dedicated four core workstation.

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 86

(a) 0.1 days (b) 260 days (c) 980 days

Figure 4.1: Pressure (bar) contour plots for three time snapshots during the course
of a simulation. The reservoir is initially at 75 bar. An injection well is located at
the top left corner and is operated at a BHP of 140 bar. A production well located
at the lower right corner is operated at 30 bar.

The test-suite consists of four simulation examples. All of the examples involve

compositional models of multiphase flow that are driven by wells. The examples

differ in terms of the structure and level of heterogeneity of the field, the problem

dimensionality, and the number of chemical components and phases involved.

4.1.1 Example 1: Two dimensional, nine component model

The first benchmark problem involves a horizontal two-dimensional square field that is

homogeneous except for the presence of a hundred-fold permeability anisotropy strip

running along the middle. The field is discretized using a 50 by 50 Cartesian mesh.

The model is of nine chemical components which may partition into two phases; oil

and gas. At one corner of the field, an injection well is operated under a Bottom Hole

Pressure (BHP) control introducing a gas mixture of Methane and Carbon Dioxide

into the reservoir. At the diagonally opposite corner of the field, a production well is

operated under a fixed BHP control as well.

Figure 4.1 shows a sequence of three contour plot time snapshots of the pres-

sure field. The evolution of the pressure field shows the effects of the considerable

compressibility within the system which introduces a transient stage of flow develop-

ment. Moreover, due to both, the heterogeneity and the differing phase mobilities,

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 87

(a) 30 days (b) 500 days (c) 750 days

Figure 4.2: Gas saturation time snapshots of a simulation of a reservoir that is initially
oil saturated. An injection well located at the top left corner introduces a gaseous
mixture of Methane and Carbon Dioxide while a production well located at the lower
right corner produces a mixture of gas and oil.

the pressure field is not radially symmetric.

Figure 4.2 shows a sequence of three time snapshots of the gas saturation. Initially,

the reservoir is pressurized and the fluids within it are within the oil phase. As gas

is injected, the production well draws down on the reservoir thereby lowering the

pressure within the vicinity of the production well. This local de-pressurization causes

some phase change to occur at the production well liberating some gas. This example

includes phase appearance due to both injection effects and thermodynamic effects.

Both situations result in variable switching within the affected cells.

Table 4.1 presents the timestepping and solver statistics over the course of the

simulations using GPRS and ADGPRS. While the two simulators are as similar as

possible as far as modelling and alogrithmic content, there are some differences that

lead to the count discrepancies. For instance, various heuristics are used within

the nonlinear solution loops of both simulators, and at the time of writing, these

differences may lead to a alight variation in the number of nonlinear iterations to

convergence.

Table 4.2 presents the timing results obtained. In addition to total simulation

time, the table lists the timings of three parts of the simulation process; the time

spent on computing stencil or other spatial discretization operations, time spent in

computing physical and thermodynamic properties, and time spent on linear solution.

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 88

GPRS ADGPRS

Time Steps 61 61

Newton Iterations 271 262

Linear Iterations 1021 1012

Table 4.1: Time-stepping and solver statistics for a simulation using GPRS and ADG-
PRS.

Factoring in the number of iterations taken, the overhead of the ADETL in this case

is clearly negligible.

GPRS ADGPRS

Discretization (sec) 20 15 75%

Properties (sec) 87 67 77%

Linear Solver (sec) 31 36 116%

Simulation Total (sec) 139 123 88.5%

Table 4.2: Computational time

4.1.2 Example 2: A five-spot pattern in a two-dimensional

heterogeneous domain

The second benchmark problem involves a horizontal two-dimensional rectangular

field with structured heterogeneity. The permeability, and the corollated porosity,

were taken from the tenth layer of the SPE 10 Comparative Study Model [16]. Fig-

ure 4.3 shows a plot of the logarithm of permeability in the field. The field is dis-

cretized using a 60 by 220 Cartesian mesh. The model involves four chemical compo-

nents which may partition into the oil and gas phases. A five spot pattern of wells is

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 89

Figure 4.3: A plot of the logarithm of permeability taken from the tenth layer of the
SPE 10 model [16]. The porosity used in this example is correlated with permeability.

formed by operating four production wells on each of the corners, and one injection

well in the center of the field. The injection well is operated under a Bottom Hole

Pressure (BHP) control and introduces a gas mixture of Methane and Carbon Dioxide

into the reservoir. The production wells are also operated under a fixed BHP control.

Similar to the situation in the previous benchmark example, the model involves

significant compressibility. Figure 4.4 shows a sequence of three pressure field contour

plots at three times during the course of a simulation. The evolution of the pressure

field shows transient effects, and to a larger degree than in the previous case, the field

heterogeneity forces an asymmetric pressure field.

Figure 4.5 shows a sequence of three time snapshots of the gas saturation in the

field. As was the case in the previous example, the reservoir is initially pressurized

such that the original fluid within it is in the oil phase exclusively. As gas is injected

and the production wells come online, a pressure gradient develops. Because of the

structure of the permeability in this example, the two production wells on the left side

of the domain draw down a steeper gradient. This introduces a rather substantial

phase change from oil to gas due to thermodynamic stability. Forced gas phase

introduction occurs due to direct injection, and in this case, the injected gas produces

an asymmetric front.

Table 4.3 presents the timestepping and solver statistics over the course of the

simulations using GPRS and ADGPRS. While the two simulators are as similar as

possible as far as modelling and alogrithmic content, there are some differences that

lead to the count discrepancies. For instance, various heuristics are used within

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 90

(a) 0.03 days

(b) 1.25 days

(c) 7.5 days

Figure 4.4: Pressure (psi) contour plots for three time snapshots during the course
of a simulation. The reservoir is initially at 1100 psi. An injection well is located
in the center of the model and it is operated under a BHP control 1828 psi. Four
productions wells are located at the corners of the model, and are operated at 435
psi.

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 91

(a) 25 days

(b) 414 days

(c) 1314 days

Figure 4.5: Gas saturation time snapshots of a simulation of a reservoir that is initially
oil saturated. An injection well located at the center introduces a gaseous mixture
into the reservoir.

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 92

GPRS ADGPRS

Time Steps 164 164

Newton Iterations 735 640

Linear Iterations 4062 3641

Table 4.3: Time-stepping and solver statistics for a simulation using GPRS and ADG-
PRS.

the nonlinear solution loops of both simulators, and at the time of writing, these

differences may lead to a alight variation in the number of nonlinear iterations to

convergence.

GPRS ADGPRS

Discretization (sec) 108 97 0.9%

Properties (sec) 141 214 1.5%

Linear Solver (sec) 176 171 0.98%

Simulation Total (sec) 426 494 1.16%

Table 4.4: Computational time

Table 4.4 presents the timing results obtained. In addition to total simulation

time, the table lists the timings of three parts of the simulation process; the time

spent on computing stencil or other spatial discretization operations, time spent in

computing physical and thermodynamic properties, and time spent on linear solution.

Factoring in the number of iterations taken, the overhead of the ADETL in this case

is clearly negligible.

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 93

Figure 4.6: Derivative sparsity structures, call frequencies, and typical execution times
of three major components of formulation and linearization routines; thermodynamic
stability calculations, property and accumulation calculations, and stenciling routines.

4.2 Summary

To date, the general experience with ADGPRS is positive. Empirical results, in-

cluding those presented in this discussion, show little computational overhead due

to the use of the ADETL in constructing robust large scale general purpose simu-

lators. Moreover, this is attained with little to no tuning or active optimizations

using customized components heterogeneously as apropriate. At the time of writing,

ADGPRS was implemented using block sparse gradients and SPLC expression build-

ing and evaluation routines exclusively. The results in this section reveal a glaring

potential target area for optimization; the property calculation and phase behavior

routines.

CHAPTER 4. ADETL SIMULATORS AND COMPUTATIONAL EXAMPLES 94

Figure 4.6 shows a survey of resultant Jacobian sparsity structures, call frequen-

cies, and percent execution time for three parts of a residual call. These are thermo-

dynamic flash calculation routines using the Sccessive Substitution Iteration (SSI)),

accumulation, block property, and block Newton flash routines, and finally, opera-

tions invovlving indexing across blocks. The sparsity structures show the optimiza-

tion opportunity rather clearly. The SSI routines are better off using floating point

datatypes. The accumulation terms can be better computed using dense multivariate

scalars with no assumption on sparsity. Finally cross-block terms seem to be optimal

with the current choice; block-sparse multivariate gradients.

Chapter 5

Possibilities for the future of the

ADETL

The ADETL is a modern extensible library that is large and continuously grow-

ing. The ADETL is architected in a multilayer style. The library provides generic

datastructures and algorithms for the rapid development of flexible formulation and

linearization modules. The highest layer of the library provides constructs that allow

the user to define and operate with rather general concepts of formulations, un-

knowns, and state. One layer below this, the ADETL provides constructs that can

be used to write any nonlinear system. The sparse analytical Jacobian is evaluated

automatically behind the scenes. The derivative computations and Jacobian sparsity

analysis routines are not only automatic and flexible, but they also result in very

low computational overhead. The AD core of the library is built from the ground up

using lower layer ADETL constructs. Such constructs provide encapsulated generic

implementations of memory management, indirection, and iterative concepts. With

compile-time switches, the programmer can essentially instantaneously produce sim-

ulation code tailored to various platforms.

The ADETL has enabled the development of ADGPRS, which makes the rapid

modification of the choice of numerical variables a reality. Multi-user experience with

ADGPRS is mounting and over three years since its inception, the developer and

user base has been expanded significantly. Empirical results demonstrate that the

95

CHAPTER 5. POSSIBILITIES FOR THE FUTURE OF THE ADETL 96

computational efficiency of ADGPRS is comparable to other large-scale hand-written

codes.

The future of the ADETL is promising. In order to capitalize on this infrastruc-

ture, it is critical for the ADETL to continuously evolve. It would be unwise to neglect

advances in language standards, compilers, and hardware architectures. Moreover,

as the user base of the library continues to expand, and as all corners of the ADETL

undergo general user stress testing, it is more than likely that unanticipated needs

will arise. While it is an ambitious principle to uphold, the directions in which the

ADETL grows are best set by the collective experience of its users. Moreover, the

most useful feedback should come from users of the higher layers of the library, since

they are the true clients. Exclusively using the input of the type of user that is

completely proficient with and knowledgeable of the internal workings of the ADETL

is like stamping the old brochures of a legacy code with the words, ”and now, user

friendly”. Given this cautionary opinion, and based on current trends in the use of

the ADETL in building ADGPRS, a few key advances are foreseeable. These direc-

tions fit nicely into a dichotomy. The first category of directions are those that build

on content within the bounds of established ADETL concepts. The second is that of

synthesizing new concepts to meet new kinds of needs.

5.1 Old concepts, new directions

The ADGPRS experience teaches by example a number of lessons on the practical

use of AD in modern large scale simulation. Of these lessons, three stand out as

first-order research directions that could lead to game changing contributions as far

as the ADGPRS user base is concerned.

CHAPTER 5. POSSIBILITIES FOR THE FUTURE OF THE ADETL 97

5.1.1 More datastructures and heterogeneous expressions across

them

A lesson learned from building ADGPRS is that locally specialized datastructures,

particularly for the gradient components, are paramount. The mathematical inter-

mediary terms in a realistic sophisticated model involve constants, univariates, block

computations, and stenciling and other inter-block operations. The ADETL pro-

vides total extendability to deliver all of these datastructures. This is something that

should be taken advantage of. While the ADETL today does provide a wide range of

datastructures, there has been little experience with cross-datastructure interactions.

This will be an important upcoming challenge for ADETL developers. Cross-type

expressions require some serious design choices to be made. While in mathematics,

arithmetic operations are closed, the ADETL analogues are not necessarily so. The

introduction of the generic type parameterizations require the designer and developer

to agree on a system for closure; for example, a sparse multivariate expression, plus

a dense multivariate expression yields a block dense resultant regardless. Once these

type closure decisions are made, they need to be communicated in such a way as to

avoid subtle logic errors.

5.1.2 What is a variable set today and what will it be tomor-

row?

The ADGPRS development team experienced ADETL’s ability to abstract formula-

tion concepts comprehensively delivering automatic management behind the scenes.

The initial experience raised a few brows. From the users’ standpoint, the variable

set concept and the notions of local differentiation contexts and state seemed un-

natural. From the ADETL developer’s perspective, this new territory seemed dense

with mines. The variable set layer of the library when used incorrectly could lead to

logical programming errors that are more subtle perhaps than any issue with hand

coding a Jacobian matrix. The fact that the underlying notions of the layer are new

ups the ante. It is anticipated that the upper-most layer of the ADETL will move

towards one of two directions. The first direction is towards capping off the power of

CHAPTER 5. POSSIBILITIES FOR THE FUTURE OF THE ADETL 98

Figure 5.1: A schematic of a potential direction for the Automatic Variable Set Object
AVSO layer of the ADETL. To reduce the potential for subtle logic errors, the AVSO
provides a limited set of contexts to manage variables in a simulation code.

the layer by enforcing a strict and succinct list of ways in which it can be used. The

other is more ambitious, and aims to re-enforce the abstract notions of variables and

unknowns while providing domain specific concept checkers to validate code and help

comb out any bugs in the ointment.

Figure 5.1 illustrates a mechanism by which to limit the range of use and mis-use

of automatic variable sets. Essentially a library of a handful of specific contexts are

available to the user. These contexts are familiar and concrete to domain experts.

The advantage of such an approach is tighter concept and error checking. The po-

tentially grave disadvantage is that the power to accommodate unexplored contexts

of variable sets and activation systems is essentially limited. New concepts must be

accommodated with an explicit horizontal integration which may not scale well.

CHAPTER 5. POSSIBILITIES FOR THE FUTURE OF THE ADETL 99

The second possible direction is towards a standard specification and workflow

check system. A debugging tool can be developed to outline to the user all differenti-

ation contexts throughout the life of a simulation. The tool will need to ”speak” the

domain experts’ language.

5.1.3 Thread safety first

An obvious direction is towards stretching the boundaries of the platform specific

layers of the ADETL. It is anticipated that the primary contribution to this area

will be thread safety in and of itself. That is, dynamic memory pools and expression

object construction and destruction routines need to manage their own thread safety

concerns. The idea of implementing parallel variations of the AD evaluation core is

far less interesting. This is due to the ultra-fine level of granularity of such operations

in the context of ADGPRS as a whole.

5.2 Synthesized Concepts For The ADETL

Beyond working within the realm of current ADETL concepts, the potential for ad-

vancement is bright. Two specific advancements are anticipated to significantly im-

pact the way the ADETL is used. The first is the growing use of pre-compile time

analysis and the hooks that such analysis could create when combined with the tem-

plate metaprogramming style and even the generic parameterizations of the ADETL.

The second exploits the fact that the expression parse graphs are available to the

processor.

5.2.1 Automated performance tuning

In simulation, sparsity is a permanent reality. The primary tried and tested means to

achieving acceptable computational efficiency is to recognize and the heavy register

demands of sparse operations. The optimal parameters for features such as the dense

block size and loop unrolling depths are both platform and context specific. The

performance impacts of tuning such parameters can be on several orders of magnitude.

CHAPTER 5. POSSIBILITIES FOR THE FUTURE OF THE ADETL 100

Despite this significant impact, such tuning is rarely conducted by say a specific

user of ADGPRS or the ADETL. That is expected since the tuning process requires

substantial expertise, and guiding it is very tedious. Experience proves that if the

optimization is not automatic or inherent then people will avoid it.

Automatic tuning is a form of pre-compilation analysis. In fact it is often per-

formed by install-time scripts. One successful example of an automated tuning system

in use today is the ATLAS which is a performance tuned BLAS. Another is the sparse

linear algebra package OSKI. The OSKI system optimizes its register blocking com-

ponents for the actual machine the library is installed on. Optimal block sizes are

determined for various datastructures and linear algebra operations. A potential di-

rection to expand the ADETL is to introduce an install time optimization system.

The system would run a few residual formulation and linearization calls so that a high

code coverage is achieved. The optimization parameters are not only sparsity related,

but also related to selecting amongst various ADETL datastructures and algorithms

locally throughout the application.

5.2.2 Code verification, generation, and evolution

The ADETL introduces the idea of caching partial or complete parse graphs. This

ability introduces considerable potential. Automatic code verification, generation,

and documentation can become a reality. The formulation and linearization graphs

can be serialized into any mathematical language specification to be verified or docu-

mented in a visual mathematical language. Another application would be to serialize

to symbolic manipulation systems allowing two-way plug-ins to various problem solv-

ing environments.

With a longer term outlook, the ability to automatically generate variations on a

simulator can lead to higher order applications. Once such potential is in situations

where a physical phenomenon is observed and yet the governing physical model is

unknown. In such cases, it is conceivable that an inverse problem may be solved

where the control parameter is the governing model itself or some constitutive relation

component. The target could be the observation itself, or asymptotic characteristics

CHAPTER 5. POSSIBILITIES FOR THE FUTURE OF THE ADETL 101

over a space of governing parameters.

Part II

The Nature Of Nonlinearities In

Simulation And Solution Methods

That Understand Them

102

Chapter 6

Introduction

Growing interest in understanding, predicting, and controlling advanced oil recovery

methods emphasizes the importance of numerical methods that exploit the nature

of the underlying physics. Multi phase, multi component, flows through subsurface

porous media couple several physical phenomena with vastly differing characteristic

scales. Moreover, scale separation is not always apparent. The fastest processes

such as component phase equilibria occur instantaneously and subsequently they are

modeled using nonlinear algebraic constraints. Mass conservation laws govern the

transport of chemical species propagating through an underlying flow field. These

transport phenomena are near-hyperbolic. In the limit of low capillary numbers, the

transport equations are purely advective and they give rise to an evolution with a

finite domain of dependence. In the other limit, the transport problem is diffusive.

Moreover, the underlying flow field itself is also transient, and it evolves with parabolic

character. In the limit of no total compressibility, the flow field reaches instantaneous

equilibrium, and is governed by an elliptic equation. Constitutive relations such as

that for the velocity of a phase couple the variables across governing equations in a

strongly nonlinear manner. Consequently, one challenge in modeling large scale flows

through general porous media is in resolving this coupling without sacrificing stability.

Additional sources of complexity include the heterogeneity of the underlying porous

media, body forces, and the presence of wells which are typically operated using busy,

and often discrete, control schedules.

103

CHAPTER 6. INTRODUCTION 104

In practice, a rich collection of numerical treatments is used to model porous me-

dia applications. For a classic review, see [4]. Broadly, these numerical methods can

be partitioned into two categories based on the tactics used to deal with nonlinear

coupling. One approach is to seek a collection of methods that are tailored to resolv-

ing the physics within specific distinct regimes. It is natural that within such regimes,

the physics are dominated by one type of model over another. With a priori knowl-

edge of how these regimes interact and of when transitions occur, tailored methods

can be combined and applied adaptively as appropriate through the course of a sim-

ulation. Examples of methods in this class are Operator Split schemes [75, 49], and

semi-implicit methods [4]. A second approach is to seek a class of methods that re-

solve a wide range of processes in a fully coupled manner. Rather than deal with stiff

nonlinear coupling in the construction of the numerical approximation, such methods

delegate that responsibility onto the underlying nonlinear solver and timestep con-

trollers. Robust nonlinear solvers are particularly important when physical regime

transitions occur frequently and in a complex manner. Overarching both philosophies

is the fact that strong nonlinear physical coupling across a wide range of timescales

poses challenges. In the split-and-couple, semi-implicit approach, severe restrictions

on the timestep size usually arise, and timestep control for stability requires deep in-

sight into the underlying physics. In the fully-coupled, fully-implicit approach, while

there are no stability restrictions in the sense of the discrete approximations, the

resulting algebraic nonlinear systems are difficult to solve ([4, 37, 43]).

This work focuses on exploiting fundamental understanding of implicit methods

for oil recovery problems in order to devise nonlinear solution strategies that converge

efficiently all the time. In this introduction we study the nature of nonlinearities that

are typical of porous media flows, and we analyze the performance of the current

state-of-the-art in nonlinear solvers.

CHAPTER 6. INTRODUCTION 105

6.1 Timestepping and nonlinearity in implicit mod-

els

In fully-implicit, fully-coupled methods, all unknowns are treated implicitly. This

gives rise to a fully coupled nonlinear system of discrete equations that must be solved

for at each timestep. One attractive aspect of this approach is its unconditional sta-

bility which is obtained at the cost of tight nonlinear coupling between fundamentally

differing phenomena; e.g. parabolic and hyperbolic components. Two practical short-

comings of this approach continue to receive attention from the research community

(see for example [37, 43]). The first is that available solution methods for the discrete

nonlinear systems may themselves not be unconditionally convergent. The second

aspect is that regardless of the technical details of the particular solution method,

the computational effort required to solve large coupled systems can be significantly

larger than that for de-coupled, localized computations, such as in a convergent step

of a semi-implicit method. The practical implication of these two shortcomings is

the use of time-step chops. With a try-adapt-try strategy, an attempt to solve for a

time-step is made. If that fails within a specified finite amount of time, the time-step

is adapted heuristically, and the previous effort is wasted.

Current simulators rely on a fixed-point iteration, such as a variant of Newton’s

method in order to solve these problems (see for example [4, 52, 25]). For general

problems, Newton’s method is not guaranteed to converge, and it is known to be

sensitive to the initial guess, which must be supplied somehow. In most reservoir

simulators, the initial guess to the iteration is the old state. For small timestep sizes,

this is a good approximation to the new state, and is therefore likely to be a good

starting point for the Newton iteration. For larger timesteps, however, this is less

likely to be the case, and the iteration may converge too slowly, or even diverge. To

motivate why Newton’s method may fail in practice, we consider its origin and some

examples.

CHAPTER 6. INTRODUCTION 106

6.1.1 The Newton Flow and Newton-like methods

At each time-step of an implicit simulation, given the current state, Un ∈ RN , and a

fixed time-step size, ∆t > 0, we seek to obtain the new state, Un+1 ∈ RN , by solving

a nonlinear residual system, R : RN −→ RN as written in Equation 6.1.1.

R
(
Un+1; ∆t, Un

)
= 0 (6.1.1)

Newton’s method generates a sequence of iterates, [Un+1]
ν
, ν = 0, 1, . . ., that

hopefully converges to the new state, Un+1. Denoting the Jacobian matrix of the

residual with respect to the new state as J, this sequence is generated starting from

the old state according to Equation 6.1.2 below.

[Un+1]
0

= Un

[Un+1]
ν+1

= [Un+1]
ν − J−1R

(
[Un+1]

ν
; ∆t, Un

)
, ν = 0, 1, . . .

(6.1.2)

Newton’s iteration itself can be regarded as an explicit, first-order time-stepping

scheme for a particular dynamical system. To see this, suppose that the Newton

iteration index, ν, is actually a continuous quantity, and consider the dynamical

system in Equation 6.1.3 below.

Un+1 = Un ν = 0

dUn+1

dν
+ J−1R (Un+1; ∆t, Un) = 0, ν > 0

(6.1.3)

Comparing Newton’s iteration (Equation 6.1.2) to this dynamical system, it is

clear that Newton’s method approximates the derivative of the new state with respect

to the embedded time, ν, using a first order finite difference with a unit step size,

∆ν = 1. The forcing function of the dynamical system is the inverse of the Jacobian

acting on the residual evaluated at the old embedded step, ν. Note that the embedded

time, ν, is unrelated to the physical time step, ∆t, which is fixed throughout Newton’s

CHAPTER 6. INTRODUCTION 107

iteration. Since the forcing function is evaluated at the old embedded step, Newton’s

iteration is an explicit first-order discretization of the system in Equation 6.1.3. The

embedded time-step, ∆ν, is a step along the mathematical field defined by the system

in Equation 6.1.3, which we refer to as the Newton Flow. At the solution of the time-

step, the forcing function is zero, and so, the solution is a stable fixed-point of the

Newton flow.

Since explicit first-order time-stepping may be unstable (has a time-step restric-

tion), Newton’s iteration may not converge, even though the continuous Newton Flow

may be well-conditioned. On the other hand, for general problems, when Newton’s

method does converge, there are no guarantees on how fast it will do so.

In practice, a convergent iteration for a given time-step size may be too slow,

and it becomes necessary to stop if a prescribed maximum number of iterations is

reached before convergence is achieved. In such cases, the iterates are discarded,

and this process is repeated using a smaller time-step. It is not known rigorously

which smaller time-step could be used with success. Several heuristics are often

employed to attempt this; nevertheless, all such methods fall into a try, adapt, and

try-again strategy. It is difficult to derive rigorously a relation between time-step

size and convergence rate, since that would ultimately involve a stability analysis of

the system in Equation 6.1.3, which is both highly problem dependent, as well as

analytically intractable for realistic problems. Moreover, such an analysis is more

likely to generate iterations that needlessly follow the Newton flow field too closely,

resulting in a highly inefficient iteration.

6.1.2 An example to illustrate challenges encountered by New-

ton’s method

To illustrate the pathologies that Newton’s method may run into in practice, we

consider examples of incompressible two phase flow under gravity effects. Before

presenting these results, we introduce the details of the Buckley-Leverett model.

CHAPTER 6. INTRODUCTION 108

The Buckley-Leverett model

We consider a two-phase Buckley-Leverett problem in one-dimension with gravity

effects. Flow is through a domain with unit length, x ∈ [0, 1], and the unknown is the

water saturation, S (x, t). The governing equation in conservation form is written in

Equation 6.1.4.

St + f (S)x = 0

S (x, t = 0) = Sinit

S (x = 0, t) = Sinj

(6.1.4)

In Equation 6.1.4 above, the initial saturation is denoted Sinit, and the left bound-

ary condition, Sinj, is fixed. The fractional flow function,f (S), is defined in Equa-

tion 6.1.5 below, where the viscosity ratio, M0, and the Gravity Number, Ng, are

constant parameters.

f (S) = Krw

(
1−NgKro (S)

Krw (S) +M0Kro (S)

)
(6.1.5)

In this problem, we assume Corey relations [18] for relative permeability (Equa-

tions 6.1.6 and 6.1.7).

Krw = Krw0

(
S − Swr

1− Swr − Sor

)nw

(6.1.6)

Kro = Kro0

(
1− S − Sor

1− Swr − Sor

)no

(6.1.7)

Note that for an up-dip case, Ng > 0, or a down-dip case, Ng < 0, the fractional

flow function may exhibit a local minima or maxima respectively. This leads to the

possibility of counter-current flow. In such cases, we refer to the extremum as the

sonic point ; a local maximum or minimum in the fractional flow, denoted f ∗, and

occurring at a saturation S∗.

CHAPTER 6. INTRODUCTION 109

We apply a fully-implicit discretization in time, and a first-order upwind discretiza-

tion in space. On a uniform mesh with N cells, the numerical saturation unknown at

the nth timestep and the ith cell is denoted as Sni . The numerical scheme is written

as in Equation6.1.8 below.

Sn+1
i − Sni +

∆t

∆x

[
F
(
Sn+1
i , Sn+1

i+1

)
− F

(
Sn+1
i−1 , S

n+1
i

)]
= 0, i = 1, . . . , N (6.1.8)

In Equation 6.1.8, the timestep size is denoted as ∆t, the mesh spacing as ∆x = 1
N

,

and the numerical flux as F . We apply a Dirichlet boundary condition on the left of

the domain, and a second order treatment of a free boundary condition on the right.

These are numerically prescribed by Equations 6.1.9 and 6.1.10 below.

Sn0 = Sinj (6.1.9)

SnN+1 = 2SnN − SnN−1 (6.1.10)

For general fractional flow functions it is necessary to apply an entropy satisfying

upwind condition for the numerical flux. This condition corresponds to the analyt-

ical solution of cell-face Riemann problems. The condition applied is described by

Equation 6.1.11 below.

F (a, b) =

min
a≤s≤b

f (s) a ≤ b

max
b≤s≤a

f (s) otherwise

(6.1.11)

Note that for fractional flows with sonic points, the numerical flux at a cell inter-

face may be independent of both the left and right cell saturations when it is evaluated

at the sonic point.

We illustrate fully-implicit solutions for two cases of Problem 1. The first case

is a horizontal piston-like displacement, and the second includes gravity effects and

CHAPTER 6. INTRODUCTION 110

exhibits counter-current flow. In both cases, the injection saturation is one, Sinj = 1,

and the relative permeability functions are quadratic with end-points of zero and one.

In the horizontal case, the end-point mobility ratio M0 is chosen as 10, the Gravity

Number Ng is chosen as 0, the initial saturation, Sinit, is zero, and N = 150. Fig-

ures 6.1(a) and 6.1(b) show the fractional flow curve and solution profiles for various

timesteps, respectively.

In the down-dip case, the end-point mobility ratio, M0, is chosen as 0.5, and

the Gravity Number, Ng, is chosen as -5 for a down-dip problem. The number of

grid blocks used is N = 150. The initial condition has a saturation of one up to a

distance of 0.34, and a saturation of zero elsewhere. Figures 6.2(a) and 6.2(b) show

the fractional flow curve and solution profiles for various times.

A two cell Newton Flow example

We apply a fully-implicit discretization on a discrete domain with two-cells; N = 2.

The corresponding residual is regarded as a function in two-dimensional space. The

first dimension is the range of possible saturations in the first cell S1 ∈ [0, 1], and

second dimension is the range in the second cell S2 ∈ [0, 1]. We compare the Newton

iterations to the Newton flow in this two-dimensional space for two physical cases. The

first is a horizontal case (Ng = 0), and the second is a down-dip problem (Ng = −3).

In both cases, we use a unit injection saturation, Sinj = 1, and a uniform zero initial

saturation, Sinit = 0. The corresponding fractional flow curves to the two cases are

illustrated in Figures 6.3(a) and 6.3(b) respectively.

Figures 6.4(a) and 6.4(b) illustrate a Newton process (series of straight thick

blue arrows) for both physical cases starting from the old state Sn = (0, 0) for a time-

step of one. The contour lines on the figures are those of the norm of the residual,

‖R (S; ∆tD, S
n)‖ over S ∈ [0, 1] × [0, 1]. The thick curved black lines are integral

numerical solutions of the Newton flow of Equation 6.1.3 emanating from various

starting points on the boundary of the two-dimensional space. These integral curves

are obtained using a high fidelity numerical integrator (variable-order Runge-Kutta

with automatic step control), and they illustrate the continuous paths that Newton’s

method attempts to approximate, should it have been started from these various

CHAPTER 6. INTRODUCTION 111

(a) Fractional flow curve

(b) Solution profiles

Figure 6.1: Fractional Flow curve and saturation solution profiles for a 1-dimensional
Buckley-Leverett problem without gravity.

CHAPTER 6. INTRODUCTION 112

(a) Fractional flow curve

(b) Solution profiles

Figure 6.2: Fractional Flow curve and saturation solution profiles for a down-dip
1-dimensional Buckley-Leverett problem.

CHAPTER 6. INTRODUCTION 113

(a) Horizontal displacement Ng = 0 (b) Down-dip displacement Ng = −3

Figure 6.3: Fractional Flow curves for a 1-dimensional Buckley-Leverett problem.

initial guesses.

For the horizontal case, Figure 6.4(a) shows that Newton’s method converges to

the solution Sn+1 = (0.5, 0.45) in two iterations. Moreover, the Newton flow integral

curves are generally smooth curves, all of which flow towards the solution. On the

other hand, Figure 6.4(b) shows the iterates obtained for the down-dip case. Here,

Newton’s method diverges, with the iterates alternating between the points (1, 0) and

(0, 1). For this case, the Newton flow integral curves are not smooth, and over satura-

tion loci where the upwind directions change, there are clear kinks along the Newton

integral curves. The smooth region around the solution is considerably smaller than

that for the horizontal case in Figure 6.4(a). In theory, while following the Newton

flow more accurately can lead to an increased robustness, the computational efficiency

of doing so may be unjustifiable. In order to manage this trade-off, several variants

of Newton’s method have been devised, and are said to safeguard the iteration by

improving it’s ability to follow the Newton flow in some fashion.

6.2 Safeguarded Newton-Like Methods In Reser-

voir Simulation

Given the possibility of divergence of Newton’s method for general problems, a num-

ber of variants have been devised to dampen the Newton updates. All of these

CHAPTER 6. INTRODUCTION 114

(a) Horizontal displacement Ng = 0

(b) Down-dip displacement Ng = −3

Figure 6.4: Residual norm contour lines, high-fidelity Newton flow integral paths
(dotted), and Newton iterations (arrows) for two cases of Problem 1.

CHAPTER 6. INTRODUCTION 115

methods, which are said to safeguard the iteration, can be viewed as different ways

to specify a diagonal matrix Λ = diag (∆ν1, . . . ,∆νN) in a safeguarded Newton

iteration written in the general form given by Equation 6.2.1.

[
Un+1

]ν+1
=
[
Un+1

]ν −ΛJ−1R
([
Un+1

]ν
; ∆t, Un

)
(6.2.1)

These diagonal weights can be interpreted as local time-steps in the explicit inte-

gration of the Newton flow introduced in the previous section. The standard Newton’s

method selects all of these weights to be unity, and subsequently, in cases where the

underlying Newton flow changes too rapidly, the iteration may not converge.

There are several classic approaches to safe-guarding Newton’s method, such as

the line-search and trust-region algorithms described in [52] and [25], for example.

In these methods, all entries of the diagonal are identical, implying that the Newton

direction is simply scaled by a constant factor. In these methods, the choice of this

scale is dictated by the rate of change in the residual norm along the Newton direction

or within a neighborhood about the current iterate.

In commercial reservoir simulators, heuristic strategies have also been devised to

safe-guard Newton’s method. Such strategies select the diagonal scaling entries on a

cell-by-cell basis using physical arguments. In practice, these heuristics are known to

improve convergence (larger time-step sizes can be converged from the same initial

state). There is a common underlying hypothesis shared by the most commonly

employed heuristics. The hypothesis may be motivated by the residual contours in

Figure 6.4, and by the shape of common fractional flow curves (e.g. Figure 6.3).

The hypothesis is that the nonlinearity of the residual is in some sense dictated by

the structure of the flux function in each cell. That is, suppose that a nonlinear

Gauss-Seidel iteration is applied to the residual system as a whole. Then for each

Gauss-Seidel iteration, the residual in each cell must be solved sequentially. To solve

each of these single cell nonlinear residuals, we may apply a scalar Newton process,

obtaining the saturation in the current single cell, assuming all other cell saturations

are known. These scalar Newton iterations need to be safe-guarded by some scalar

damping protocol ([46]). If this protocol assures cell-wise convergence of a Newton

CHAPTER 6. INTRODUCTION 116

iteration, then the outer Gauss-Seidel iteration at least has a hope of converging.

The hypothesis is that if the same scalar damping protocols are also applied on

saturation variables, cell-by-cell, in the context of system Newton updates, then

that too is more likely to converge. Inspecting Figures 6.3 and 6.4, we can deduce

that saturations around end-points and inflection points produce particularly sensitive

Newton directions. The hypothesis is to apply a cell-by-cell (diagonal) damping factor

to limit large changes around such physically sensitive boundaries.

The following is a sample list of heuristic scalar damping protocols for Newton

methods in Black-Oil simulation ([33, 51]):

1. Eclipse Appleyard: for saturations only, cell-by-cell, scale back changes from

immobile to mobile so that they are barely mobile. For changes from mobile to

immobile, scale back to barely mobile. Ensure saturations are between 0 and

1. Algorithm 1 performs this update for a cell-variable.

2. Modified Appleyard: do the same as method 1, and in addition require that

no saturation change in a cell is greater than some small amount in magnitude,

which is usually chosen as 0.2. This cell-wise update is described by Algorithm 2.

3. Geometric Penalty: do the same as method 1, and in addition require that no

saturation change in a cell is greater than 20 percent of the original saturation.

The focus of these cell-wise strategies is to avoid large Newton corrections to sat-

uration variables, as may arise when crossing phase boundaries or other pathological

properties of the fractional flow curve. Next, we examine practical examples of the

behavior of these methods.

6.2.1 Examples of the performance of state-of-the-art solvers.

We observe empirical evidence over a suite of numerical experiments conducted on

cases of Problem 2. For various cases of imposed well conditions, and initial saturation

distributions, the following experiment is performed. A sequence of time-step sizes is

fixed, and for each time-step size, the residual is solved using each of four protocols;

Standard Newton (SN), Eclipse Appleyard (EA), Modified Appleyard (MA), and a

CHAPTER 6. INTRODUCTION 117

Algorithm 1 APPLEYARD-SAFE-UPDATE(u, δ)

Require: u is a cell variable and δ is an update to it.
Ensure: The updated variable u∗ = u+ δ satisfies the Appleyard heuristic
u∗ ← u+ δ
if u is a saturation variable then

Set the irreducible and residual saturations, SI and Sr, such that 0 ≤ SI ≤ u ≤
Sr ≤ 1.
Fix a small positive constant 0 < ε << 1. This can be related to machine
precision;

√
εmachine

if u∗ > Sr then
if u < Sr − ε then
u∗ ← Sr − ε

else
u∗ ← Sr

end if
end if
if u∗ < SI then

if u > SI + ε then
u∗ ← SI + ε

else
u∗ ← SI

end if
end if

end if
return u∗

Algorithm 2 MODIFIED-APPLEYARD-SAFE-UPDATE(u, δ)

Require: u is a cell variable and δ is an update to it.
Ensure: The updated variable u∗ = u+ δ satisfies the Modified Appleyard heuristic

if u is a saturation variable then
Fix a positive constant 0 < Cmac < 1. This is typically 0.2
δ ← SGN(δ) min (Cmac, |δ|)

end if
u∗ ← APPLEYARD-SAFE-UPDATE(u, δ)
return u∗

CHAPTER 6. INTRODUCTION 118

(a) 0.05 PVI

(b) 0.1 PVI

Figure 6.5: Oil saturation snapshots over a simulation of a model with oil on the
bottom initially, a water injector in the lower right corner, and a pressure controlled
producer in the upper-right.

CHAPTER 6. INTRODUCTION 119

Algorithm 3 MODIFIED-APPLEYARD-NEWTON-SOLVER(Un,∆t)

Require: ∆t ≥ 0 and Un ∈ RN

Ensure: R (U ; ∆t, Un) = 0, and niter < MAXITER
niter ← 0
U ← Un

while niter < MAXITER, and, ‖R (U ; ∆t, Un)‖ > RTOL do
δ ← −J (U,∆t;Un)−1R (U,∆t;Un)
for i = 0 to i = N do
U (i)← MODIFIED-APPLEYARD-SAFE-UPDATE(U (i) , δ (i))

end for
niter ← niter +1

end while
return U , niter

Geometric Penalty (GP). Each target time-step is solved using the old state as a start-

ing guess. The number of iterations is noted, as are the convergence characteristics.

In a representative case, the initial condition has oil on the upper half of the domain,

and water below. A rate controlled water injector is applied in the lower-left corner,

and a pressure control producer is placed in the upper right corner. Figures 6.5(a)

to 6.5(b) show saturation solutions obtained for independent time-steps of sizes 0.05

and 0.2. Figure 6.6 shows the iteration count profiles.

As is empirically typical of problems involving two or more physical driving forces,

SN and EA diverge (do not converge no matter how many iterations are spent) for

time-steps larger than 0.005. The MA and GP strategies are convergent over the entire

tested range of step sizes. What is key to this discussion is that while strategies such

as MA and GP lead to convergent iterations, the number of iterations required grows

with the requested time-step size. In practice, a maximum number of iterations is

imposed by the user for efficiency considerations. So, while MA may well converge in

150 iterations, if the maximum allowable is 10, then the iteration is halted. The 10

iterations are wasted, and a heuristic must be used to scale back the time-step size

to one for which MA may converge in less than 10 iterations. It is this try, adapt,

and try again strategy that often brings a simulation of a complex model with several

physical transitions to a grinding halt.

CHAPTER 6. INTRODUCTION 120

Figure 6.6: The number of iterations required to solve a sample time-step size using
Standard Newton (SN), Eclipse Appleyard (EA), Modified Appleyard (MA), and a
Geometric Penalty (GP).

Chapter 7

Adaptive Localization

Broadly, models of multi-phase flow in porous media are of mixed parabolic-hyperbolic

character. They often include stiff nonlinear source terms and as well as additional

equations in the form of nonlinear algebraic constraints. In practice, such models

are numerically approximated using coupled implicit time-stepping strategies as the

method of choice. Implicit coupled methods require little in the way of timestep

control for numerical stability. A frequently cited limitation of implicit methods how-

ever is that they require the solution of large coupled nonlinear systems. The use of

iterative solution approaches is therefore inevitable. Furthermore, the more popular

iterative methods employed to solve such systems are of the quasi-linearized type.

Each iteration within such approaches requires the solution of a large linear system.

The challenges of designing large scale variants of nonlinear solution methods con-

tinues to be the topic of numerous research efforts. All large scale variants generally

fall into one of two categories; methods that solve the original nonlinear system using

linearizations of a related less computationally expensive problem, and those that

solve a more tractable approximate nonlinear system using exact linearizations.

Several methods have been designed to reduce the computational cost associated

with solving a timestep by substituting the original large problem with a smaller

one that is in some sense representative of the original one ([15, 54, 50]). All of

these methods attempt to exploit the property of local domain of dependence which

is characteristic of traveling wave problems. The approximation methods choose a

121

CHAPTER 7. ADAPTIVE LOCALIZATION 122

coarser proxy representation by focusing the modeling detail around critical features

and locales within the domain at a given point in time. The result is that the proxy

model is typically an order of magnitude smaller than the original problem which

it hopefully approximates. In such approaches, it is often challenging to guarantee

that solving the coarse model results in an adequately representative solution to the

original nonlinear problem. This is a potentially severe drawback, particularly in

situations where accuracy is of any concern.

Another approach towards developing adaptive methods is to stick to a standard

scheme and spatial mesh, and to then build adaptivity into the underlying solver.

Because neither the mesh nor the scheme are modified, there will be no introduction

of accuracy or stability issues. Large-scale variants of Newton’s method, for exam-

ple, reduce the computational effort required for each iteration without degrading the

local nonlinear convergence rate ([43, 73]). Common approaches to achieving this

are Inexact- and Quasi-Newton methods, or a combination of both ([52, 25]). Given

an accurate and updated Jacobian matrix, Inexact-Newton (IN) methods apply ap-

proximate linear solvers to compute the Newton direction. When combined with

parameterized controllers for the linear solver accuracy, IN methods can successfully

manage an efficiency to accuracy trade-off. For example, Krylov-Newton controllers

can compute crude Newton steps away from the solution, and more accurate ones

within the quadratic convergence basin [24]. Quasi-Newton (QN) methods, on the

other hand, use approximations to the Jacobian matrix itself, thereby reducing the

computational effort required to compute it. Examples of such approaches are the

rank-one family of updates that seek to use the iterate information in order to quickly

update the Jacobian matrix. While it is challenging to control the accuracy of such

updates, QN methods such as the Broyden update class [10] are the method of choice

when the Jacobian itself is not available for computation. While such approaches

always produce accurate solutions to the original problem, the attained speed-ups are

seldom on an order of magnitude.

The objective of this work is devise large-scale solution methods to obtain quasi-

linearized iterates with the best of both approaches; the computational speed-ups

typically attained by using locality information, and the robustness and accuracy of

CHAPTER 7. ADAPTIVE LOCALIZATION 123

exact methods with indirect solvers. The idea is to solve the large linear systems

arising through the course of IN and QN strategies by solving considerably reduced

systems while still guaranteeing accurate computation of Newton directions to the

original problems. The key is to exploit the same locality ideas used by approximate

methods such as dynamic upscaling but within the context of solving the full linear

systems.

7.1 Basic ideas and motivation

Owing to the nature of the constitutive relations, the Reservoir Simulation governing

equations exhibit mixed parabolic-hyperbolic character; the mass flow potential field

evolves with a diffusive character, and it is coupled to the underlying advective wave

propagation of phase saturation and chemical concentrations.

Pressure and Temperature are the two Reservoir Simulation state variables that

predominantly act as potentials for diffusive processes. While Pressure forms the po-

tential for Darcy flow, Temperature forms the potential for conductive heat transfer.

As is the case with all stable parabolic models, transient evolution processes occur

over a finite characteristic timescale, the duration of which leads undisturbed diffu-

sion processes to their steady state. Despite this finite temporal characteristic scale,

transient diffusive processes occur over an infinite spatial domain-of-dependence. Sub-

sequently, diffusive changes such as in Pressure fields are felt throughout the entire

domain instantaneously, despite being driven locally such as by a well that begins to

draw down. Within the context of Reservoir Simulation models, transient diffusive

processes are driven by one of two mechanisms. The first is by models of human

control; for example, well controls or subsurface heaters that are turned on or off

during the course of a simulation in order to achieve certain engineering objectives.

The second is due to coupling to other state variables that are themselves transient

and not necessarily governed by a parabolic character. For example, in incompress-

ible flow, the conservation equation that is aligned with pressure is elliptic, and yet

pressure can be time-dependent if the mobility coefficients in the elliptic operator de-

pend on other state variables such as Saturation or Concentration which evolve with

CHAPTER 7. ADAPTIVE LOCALIZATION 124

hyperbolic character. Regardless of the driving mechanism, diffusive transients in the

context of Reservoir Simulation occur rapidly leading to some form of a temporally

local steady state. Subsequently, the lack of spatial locality associated with diffusive

changes does not undermine the overall locality of reservoir processes.

Phase Saturation, concentration, and other chemical composition variables that

are aligned with conservation equations propagate predominantly as traveling waves.

Such waves propagate with a local spatial support within the domain, and quali-

tatively at least, rarefaction or spreading waves are the spatially limiting factor of

locality. In compositional problems, the transport equations are a couple system of

nonlinear conservation laws, and with the fully implicit treatment, exploiting locality

can lead to substantial computational savings.

This qualitative understanding of the spatial and temporal locality of transient

effects is the common underpinning of various numerical strategies in Reservoir Sim-

ulation that aim improve the computational efficiency attained for a given accuracy.

Such strategies tend to exploit locality by following the time evolution of the solution

itself, and by using forward extrapolation in time in order to introduce some form

of adaptivity. In this work, we aim to bootstrap the locality information directly,

without extrapolation. In particular, the key hypothesis is that over a timestep n,

if only a few components of the old state vector Un differ from the solution state,

Un+1, then every iteration of a quasi-linearized solution process for Un+1 will also be

limited in its spatial support, and every Newton step for example will be sparse to

some degree. Then at any timestep, given the old state vector and the current iterate,

can we already identify the vector components that will change over the course of the

next iteration?

At any point in time, the upwind directions on the simulation mesh form a network

through which mass transfer takes place over the duration of a timestep. The action of

linearized state updates such as a Newton Step can be viewed as propagating material

balance errors over the domain during a timestep. These updates are computed using

the inverse of the simulation Jacobian matrix, which itself incorporates upwinding

information as well as local wave speeds. Such updates are typically non-zero only

within the vicinity of sharp fronts in the old state. The objective is to devise a

CHAPTER 7. ADAPTIVE LOCALIZATION 125

quantitative and reliable strategy to exploit this locality prior to solving the linear

system. Two key ideas underly the localization algorithms developed. The first is that

in any problem requiring the computation of a linearized update, one indicator of the

local origins of wave sources is nonzero entries in the right hand side residual vector.

The second idea is that a measure of the directionality and locality of propagation

of the error sources over a linearized update is the upwind directed graph formed by

the Jacobian matrix.

We examine these properties starting with a focus on pure transport systems,

followed by coupled parabolic-hyperbolic problems.

7.2 Locality in transport phenomena

Before exploring locality mathematically we present a high-level outline through a

simple example. Figure 7.1(a) is a depiction of the problem of computing a linear

update, δ, given an initial saturation state for a given timestep. The saturation is

assumed to be a piston-like front, and the flow is from left to right. Consequently,

the residual, R, has a single non-zero entry, isolated to the cell flanking the front.

Regardless of the size of the residual, there is only one nonzero entry, and so the

residual is considered very sparse. At the current state, the Jacobian matrix, J , is

lower bi-diagonal.

Figure 7.1(b) shows the action of the inverse of the Jacobian on the residual. The

inverse of the Jacobian is lower triangular, and it can be easily shown that its entries

decrease in magnitude away from the main diagonal. Consequently, the update is only

non-zero in the cell flanking the front, and in the cells downstream of it. Moreover, the

magnitude of the update can be shown to be largest in the frontal cell and decreases

rapidly along the downstream direction. These observations motivate an approach

to isolate non-zero entries in the right-hand-side and to independently inspect the

level of locality of their propagation throughout the directed graph of the Jacobian

matrix. Using this technique, it is possible to identify which cells will experience

linear updates larger than a prescribed magnitude, prior to solving the system. As a

result, only a smaller sub-system corresponding to these isolated cells need be solved.

CHAPTER 7. ADAPTIVE LOCALIZATION 126

(a) Schematic of the solution for a linearized update to a piston-like
displacement over a timestep.

(b) The linearized update is local to the front and decays along the
upwind direction.

Figure 7.1: An illustration demonstrating the locality of computed linear updates
(continuation tangents or Newton steps) for a one-dimensional piston-like front.

CHAPTER 7. ADAPTIVE LOCALIZATION 127

In the hypothetical example of Figure 7.1(b), this reduced sub-system is indicated by

the dotted box.

Using the principle of superposition on isolated non-zero entries, we can obtain

the solution to problems with general right hand side vectors involving more than

one nonzero entry. By linearity, the Newton step can be written as the sum of N

sub-steps,

δ = δ1 + . . .+ δN = J−1R1 + . . .+ J−1RN ,

where each sub-step is the Newton component that solves a material balance error

originating from a single cell. That is, the residual component, Rj, is a vector with

only one logically non-zero entry occurring in the jth component. As already mo-

tivated, owing to the wave propagation character of multi-phase flow problems the

residual vector is typically sparse. Subsequently, several residual components may

be zero. The localization algorithm exploits this principle of superposition in order

to estimate or directly obtain the Newton sub-steps corresponding to the non-zero

residual components.

7.2.1 Scalar Conservation Laws

For the purpose of motivating our approach, we restrict our attention in this section

to quasi-linear scalar conservation laws in one dimension (Equation 7.2.1). The flux

function f is assumed to be differentiable with derivative f ′ and may be spatially de-

pendent, and generally nonlinear; it may also have sonic points and is not necessarily

convex.

u (x, t)t + f (x, u)x = 0. (7.2.1)

We are interested in square nonlinear systems arising from implicit two-level ap-

proximations of the Godunov type (see for example [47]). A general form for the

resulting residual is written as,

R(ν) ≡
[
I + cx

(
FR − FL

)]
U (ν) − Un= 0, (7.2.2)

where the mesh ratio cx = ∆t/∆x ≥ 0 is fixed, and ν is the nonlinear iteration index.

CHAPTER 7. ADAPTIVE LOCALIZATION 128

Note in the definition of the residual above, we restrict the analysis to first-order

upwind approximations, which can generally be written as,

FR
i =

min

Ui≤U≤Ui+1

fi+1/2 (U) Ui ≤ Ui+1

max
Ui+1≤U≤Ui

fi+1/2 (U) otherwise

,i = 1, 2, . . . N (7.2.3)

Note that FL
i = FR

i−1. For a given nonlinear iteration, ν, we have at hand an

iterate, U (ν), and we compute a corresponding residual, R(ν), and Jacobian, J (ν).

From now on iteration index superscripts will be dropped, and all terms are assumed

to be at the νth nonlinear iteration of a timestep. In this notation, the corresponding

Newton step is δ ≡ −J−1R.

By linearity, we can also write the Newton step as a combination of sub-steps,

each resulting from the action of the inverse Jacobian on a single component of the

residual. That is, let R = R1 + . . .+RN be such that,

R
(i)
j =

R(i) i = j

0 otherwise

, 0 < i ≤ N,

where the superscript index, i, is the block index, and the subscript index, j, is that of

the cell with a non-zero residual entry. Subsequently, the Newton step can be written

as δ = δ1 + . . .+ δN , where δj ≡ −J−1Rj. Each Newton sub-step represents the state

update over an iteration due to a nonzero residual entry in a single cell. We will next

show that each of these sub-steps essentially propagates the isolated nonzero entry in

the residual according to the local upwind direction and the local wave-speeds. More

precisely, we derive a quantitative relation for the numerical range-of-influence due

to a given nonzero residual entry. This is first described for problems without sonic

points. We then generalize the scheme to counter-current flow problems involving

sonic points. Finally we combine this information to formulate a quantitative relation

for the total range of influence.

CHAPTER 7. ADAPTIVE LOCALIZATION 129

Flux functions without sonic points.

Given an iterate, we first suppose that the flux function has no extremal points

over the cell-state range. In this case, the upwind directions will be unidirectional

throughout the entire domain. If the flux function has nonnegative derivatives, f ′ ≥ 0,

the resulting flow is from left to right (upwind directions are to the left). Alternately,

for f ′ ≤ 0, the flow is from right to left. We derive in detail the main results assuming

f ′ ≥ 0, and state the corresponding result in the other case.

Denoting the local linearized CFL number as σi ≡ cx |f ′i |, the ith entry in the

resulting Newton step is given by,

δ(i) = − 1

1 + σi

(
R(i) − σi−1δ

(i−1)
)
, 0 < i ≤ N.

The magnitude of the Newton step in a given cell depends on, at most, the residual

values in the cells upstream of it. We can exploit this fact in order to quantitatively

identify the numerical range of influence due to a nonzero residual entry in each cell

independently.

For a given cell 0 < j ≤ N , we can write the corresponding Newton sub-step

δj = −J−1Rj as,

δ
(i)
j =

0 0 ≤ i < j

−ζjR(j) i = j

−
(∏i−1

k=j θk

)
ζiR

(j) j < i < N

, 0 < i ≤ N, (7.2.4)

where we have the local scaling constant, ζi, written as,

ζi ≡
1

1 + σi
, (7.2.5)

and the local attenuation ratios, θk, given by,

θk ≡
σk

1 + σk
. (7.2.6)

CHAPTER 7. ADAPTIVE LOCALIZATION 130

The Newton sub-step does not modify the iterate state in cells upstream of the

disturbed cell j. The cells downstream of j will be updated by a quantity that is a

scaled version of the update at the disturbance source. The question we answer here,

is how far out downstream into the domain are the effects of the disturbance felt?

Since σi ≥ 0 for 0 < i ≤ N , both the local attenuation ratios, and the scaling

constants are bounded above by one. Denoting the maximum and minimum CFL

numbers over all cells downstream of j as σmax,j and σmin,j, we derive bounds on the

local scaling constants as,

0 < ζi ≤ ζmax,j ≡
1

1 + σmin,j

≤ 1, (7.2.7)

and on the local attenuation ratios as,

0 ≤ θi ≤ θmax,j ≡
σmax,j

1 + σmax,j

< 1. (7.2.8)

We are interested in identifying the propagation rate through the Newton sub-

step. Using the bounds in Equations 7.2.7 and 7.2.8, a conservative upper bound on

the magnitude of the sub-step update in any cell downstream of the disturbance is

given as,

∣∣∣δ(i)
j

∣∣∣ ≤ (θmax,j)
i−j ζmax,j

∣∣R(j)
∣∣ , j ≤ i ≤ N. (7.2.9)

The alternate case, f ′i ≤ 0, is treated similarly. For a given Newton sub-step due

to a disturbance in cell j, we have that the magnitude of the update will be bounded

as,

∣∣∣δ(i)
j

∣∣∣ ≤ (θmax,j)
j−i ζmax,j

∣∣R(j)
∣∣ , 1 ≤ i ≤ j. (7.2.10)

Sonic points and counter-current flows.

More generally, the upwind direction may not be uniform throughout the domain. In

particular, the flux function may map from extremal points over the range of state

values in a given iterate. With single-point upwind schemes, this implies that at any

CHAPTER 7. ADAPTIVE LOCALIZATION 131

cell-face, the upwind flux of a particular phase may be evaluated at either the left-,

right-, or sonic-point states. In the first two cases, the upwinding implies a coupling

from the upstream cell to one or more cells downstream. In the case of a sonic point,

numerically, no coupling occurs over the timestep; that is the zero speed characteristic

of a Riemann fan is independent of the left and right states. Subsequently, it is easy

to show that for general states and a given sub-step of interest, one of Equations

7.2.9, and 7.2.10 would hold.

Figure 7.2 depicts a mesh over which a Newton iterate has a varying upwind

direction throughout the domain. Within the disjoint closed sub-domains labeled

Ω1, and Ω4, the flow direction is positive. Within Ω3, it is negative. Finally, the

state within sub-domain Ω2 is that of a Riemann fan over the timestep interval.

Subsequently, a non-zero residual entry in some cell j ∈ Ω1 or j ∈ Ω4, can give

rise to non-zero correction entries in the Newton sub-step, δ
(i)
j , only within cells

{i : i ∈ Ω1,4, i ≥ j}. Within these cells, the precise magnitude of the corrections satisfy

Equation 7.2.4. Moreover, the sub-step correction entries are bounded above as in

Equation 7.2.9, where now, the maximum and minimum local CFL numbers are to be

taken over the set of cells {i : i ∈ Ω1,4, i ≥ j}. Similarly, for a non-zero residual entry

in j ∈ Ω3, the effects can only be felt through {i : i ∈ Ω3, i ≤ j}, and the bounds in

Equation 7.2.10 hold. Finally, the effects of a non-zero residual in Ω2 are isolated to

that single cell.

Algebraic localization algorithm.

Having a priori conservative bounds that are easily computable, we can specify a de-

sired absolute tolerance εtol > 0, for which we wish to determine how far downstream

of the disturbance will the magnitude of the Newton sub-step components exceed the

tolerance. That is, we wish to determine an index j ≤ irange ≤ N , such that for each

k ∈ {j, . . . , irange}, we have
∣∣∣δ(l)
j

∣∣∣ ≤ εtol. Indeed such a conservative bound is easily

derived as,

îrange ≡

⌈
ln (εtol)− ln

(
ζmax,j

∣∣R(j)
∣∣)

ln (θmax,j)

⌉
+ j,

CHAPTER 7. ADAPTIVE LOCALIZATION 132

Figure 7.2: Sketch of a 1 dimensional mesh over which an iterate involves changing
upwind directions.

irange,j = max
(
j,min

(
îrange, N

))
.

Algorithmically, the absolute error tolerance, εtol > 0, can be set using the same

criteria used in controlling inexact linear solvers. That is, we may apply all of the

available theoretical machinery for relating the overall nonlinear convergence rate

with the accuracy of computing Newton steps. What is unique about our range-

of-influence approach is that even for very tight tolerances εtol → 0, the savings in

computational effort can be substantial.

Finally, this analysis provides a strategy to localize computations for each non-

linear iteration. Given the iterate, we can simply determine the index sets Iactive,j =

{i : j ≤ i ≤ irange,j} independently for each j ∈ {1, . . . , N}. Cells indexed by a set

will contain non-negligible Newton sub-steps. Cells indexed by the complement

sets will have negligible Newton changes. The union of all active index sub-sets

Iactive =
⋃N
j=1 Iactive,j flags the cells that must be updated. The reduction procedure

is a standard column and row extraction from the Jacobian matrix and corresponding

residual elements followed by a linear solve.

CHAPTER 7. ADAPTIVE LOCALIZATION 133

Computational Examples

Figure 7.3: The imposed initial condition for a hypothetical downdip Buckley-
Leverret problem. The triangular markers label components that produce nonzero
entries in the residual vector.

Figure 7.4: The residual obtained by using the imposed initial condition in Figure 7.3
as a first guess. The triangular markers show the four components that have the
largest nonzero residual errors.

We consider as an example a Buckley-Leverret model with a downdip orientation.

The fractional flow flux function is non-convex and has at least one sonic point,

introducing the possibility for counter-current flow. Figure 7.3 shows a hypothetical

initial state for a timestep. The old state itself is taken as a first guess for a Newton

process. Figure 7.4 shows the residual vector obtained. The residual vector is rather

sparse, and the largest four nonzero error components seem to sum up the information

contained in the residual.

Using the localization algorithm developed, we obtain a number of localized new-

ton steps and compare them to that obtained by solving the entire linear system.

Figure 7.5 shows the results obtained using a relatively loose absolute error tolerance,

CHAPTER 7. ADAPTIVE LOCALIZATION 134

Figure 7.5: The blue solid line shows the Newton update obtained by solving the
entire system. The red line with square markers shows the Newton update obtained
by solving for only the flagged components. This is obtained for an absolute error
tolerance of 0.09.

Figure 7.6: The solid blue line shows the Newton update obtained by solving the
entire system. The red line with square markers shows the Newton update obtained
by solving only the flagged components of the problem. This is obtained for an
absolute error tolerance of 0.001.

ε = 0.09. The localized solution involves less than a quarter of the domain, and

produces an approximate Newton step that is conservatively more accurate. Figure

7.6 shows the result obtained for a tighter tolerance. About a third of the domain is

flagged for a localized solution.

Figure 7.7 shows the range of efficacy of the localized flagging for a span of different

absolute error tolerances. For very loose tolerances, as few as three components need

be solved to meet the tolerance.

CHAPTER 7. ADAPTIVE LOCALIZATION 135

Figure 7.7: This figure presents the flagging results using a range of maximum abso-
lute error criteria. In blue, is the absolute value of the Newton update that is obtained
if the entire system were solved. Each of the red dashed level-lines demarks a flagging
trial using the level’s absolute error tolerance. The red stars on each level line show
the flagged portion of the domain to be solved by the localization algorithm.

7.2.2 Multi-dimensional problems

Owing to the local nature of saturation and concentration waves, the individual New-

ton sub-steps can be obtained or estimated without solving the entire system. This is

because each sub-step has a right-hand-side with one non-zero entry. We developed

this process for hyperbolic conservation laws in one-dimension. The extension of the

sub-step solution process extends to multi-dimensional problems on general meshes.

Figure 7.8 illustrates this. The application of the principle of superposition, where

we treat non-zero residual entries independently, holds. The entries in the Jacobian

matrix form a weighted directed graph through the mesh. By generalizing the one-

dimensional relations already derived, we can apply the same procedure to identify

cells with non-zero updates. In particular, for problems where there are no directed

cycles within the upwind graph, this is achieved by first performing a breadth-first

traversal originating at the cell with the non-zero material balance error. For an in-

troduction to the breadth-first-traversal graph algorithm, see for example [21]. By a

second traversal limited to the cells that were already visited, the update components

are computed sequentially. This is the case for all scalar problems in saturation, as

well as for multi-phase problems without counter-current flow ([46]).

CHAPTER 7. ADAPTIVE LOCALIZATION 136

Figure 7.8: A single non-zero entry in the residual can be tracked through the directed
upwind graph in order to determine its range of influence on the corrective linearized
update.

7.3 General Coupled Systems

General coupled systems may easily introduce one or more directed cycles in the

upwind graph. The consequence of this is that the system cannot in essence be

triangularized or solved sequentially. Heuristics must be employed to estimate the

range-of-influence. This is the case for problems with counter current flow and with

compressibility. Instead of using a local analytical inversion procedure, in such cases,

the heuristic we employ is to systematically disconnect edges that cause cycles. The

impact of this is not expected to be severe, since the subsequent iteration can be

shown to spread the material balance error onto a larger proportion of the domain,

requiring a complete system solve due to these global interactions.

7.4 Summary

We establish an algorithm that solves the large, coupled linear systems that arise

within nonlinear iterations for the solution of an implicit timestep of a hyperbolic

problem. The algorithm uses the sparsity structure of the residual and the directed

graph of the Jacobian matrix in order to solve the whole problem by directly solving

a smaller one. The size of the smaller system that is solved primarily depends on

CHAPTER 7. ADAPTIVE LOCALIZATION 137

the local wave speeds in the problem, and computation is typically localized to the

vicinity of traveling waves. The size of the localized system also depends on the

level of accuracy that is sought. Extensions to hyperbolic systems and to coupled

parabolic-hyperbolic models are suggested. More work is needed to establish the

viability of this approach for large problems involving complex geology and multiple

wells.

Chapter 8

A Continuation-Newton Algorithm

On Timestep Size.

Implicit/coupled methods offer unconditional stability in the sense of discrete approx-

imations. In these methods several or all primary unknowns are treated implicitly

giving rise to a nonlinear coupled system of discrete residual equations. These cou-

pled nonlinear systems must be solved at each timestep of a simulation in order to

obtain the timestep’s state solution. The unconditional stability of these methods

comes at the expense of transferring the inherent physical stiffness onto the coupled

nonlinear residual equations which need to be solved at each timestep. Current reser-

voir simulators apply safe-guarded variants of Newton’s method. These solvers often

can neither guarantee convergence, nor provide estimates of the relation between

convergence rate and time-step size. In practice, time-step chops become necessary,

and are guided heuristically. With growing complexity, such as in thermally reactive

compositional models, this can lead to substantial losses in computational effort, and

prohibitively small timesteps.

This work devises an algorithm to address these shortcomings of using Newton-

like methods. Moreover, the approach introduced in this work embeds the process

of timestep selection directly in to the nonlinear iterative solution process. More

specifically, the idea is to devise an iterative solution process for which each iterate

is a solution to a timestep that is smaller than the target step. The implications of

138

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.139

this are that (1) convergence is always guaranteed, (2) timestep chops do not involve

wasted computation, and (3) timestep selection for convergence considerations is no

longer necessary.

8.1 Associating a timestep size with iterates

To motivate our approach, we consider the nature of solutions to reservoir simulation

timesteps. Well-posed reservoir simulation residuals have a unique solution for each

timestep. The solution only needs to be unique within a prescribed domain; for

example in a cell, saturations are bounded by zero and one, pressure is positive, etc.

Let U0 ∈ RN denote such a discrete solution state vector for a particular time. Then,

independently for every possible timestep from this state, ∆t ≥ 0, there corresponds

a solution U ∈ RN that satisfies R (U,∆t;U0) = 0, where R is the vector of discrete

residual equations. All such pairs of solution and corresponding timestep, (U,∆t),

can be interpreted as points defining a curve in an N + 1-dimensional space, where

N is the number of residual equations, and the additional dimension is the timestep

size, ∆t. The existence and uniqueness of these points can be shown to imply that

they form a continuous curve, emanating from the initial point with a timestep size

of zero, (U0, 0). Furthermore, this curve has a strictly positive gradient along the

timestep dimension, since otherwise, uniqueness would be violated. The curve of

points satisfying these requirements for a particular initial state, U0, is called the

solution path emanating from that state.

For illustration, consider the solution path of a nonlinear problem in a single state

unknown, that is R (Sn+1; ∆ttarget, S
n). Since there is only one state unknown we

may plot the solution path in the two-dimensions, Sn+1 and ∆t. In a typical reservoir

simulation problem, there may be millions of unknowns, and each would be repre-

sented by a dimension. Figure 8.1(a) illustrates a solution path to this hypothetical

problem. The solution path emanates from the initial point (Sn1 = Sn,∆t = 0), and

continues to the target time step, ∆ttarget, augmented with its solution, Sn+1, in

this two-dimensional space. Notice that in this illustration, the solution path always

moves forward in timestep size and never folds on itself. Each point on the path is a

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.140

(a) Newton’s method illustrated on a solution path. All iter-
ates are evaluated at the target timestep, starting from the
old state as an initial guess.

(b) Illustration of three iterates in the Continuation-Newton
algorithm. The first two iterates are chosen along tangent
vectors. The third tangent leads to points outside the con-
vergence tolerance. A safeguarded Newton step is performed.

Figure 8.1: Solution path diagrams and solution methods depicted for a problem with
a single time-dependent unknown S. The old state, for a zero timestep, ∆t = 0, is
Sk, and the solution at the target timestep, ∆ttarget, is Sk+1.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.141

pair of a solution state and timestep size.

Also shown on Figure 8.1(a) are the standard Newton steps (curved dotted lines),

which attempt to find the solution at the target time step. With a classic Newton

process, the old state is projected to the target time tn + ∆ttarget as an initial guess.

A sequence of iterates is obtained, all evaluated using the target timestep size. A

convergent Newton iteration provides a final iterate that is close enough to the so-

lution path at the target timestep size. Should too many iterations go by without

convergence, all iterates are wasted, and the challenging task of selecting a smaller

timestep must be addressed.

8.2 The Continuation-Newton (CN) algorithm.

In order to overcome this challenge, we design a Numerical Continuation algorithm ([3,

2, 74, 61]) that proceeds from the initial state from which the solution path emanates.

The process generates a sequence of iterates along the path in the augmented N + 1-

dimensional space, climbing towards the target timestep size. Subsequently, each

iterate would be related to a known, smaller timestep. Should too many iterations go

by before the target timestep is attained, the final iterate is associated with a solution

for a smaller known timestep, from which we may continue the simulation.

8.2.1 High level outline of CN

We develop an alternative iteration to Newton’s method in which the iterates are

pairs of the unknown state, augmented with a corresponding timestep. The iteration

starts from an initial point consisting of the initial state and a timestep of zero.

The intent of the iteration sequence is to follow along the solution path toward the

solution of the target timestep size. Since we are interested in the solution for a target

timestep, we hope to avoid following the solution path (in the N + 1-dimensional

space) too closely, since that will be computationally wasteful. For this reason, we

develop a convergence neighborhood about the solution path so that points within the

neighborhood are deemed close enough to the solution path at their timestep level.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.142

The iterates can follow the path more loosely without sacrificing their proximity to

the solution for their timestep component. By parameterizing the solution path with

a single parameter along its tangential coordinates, we develop an ability to compute

the tangent to the solution path at any point in the augmented space. These tangent

computations are developed in detail in the next section.

Here, we outline the Continuation-Newton process using the single unknown hy-

pothetical example discussed earlier, namely, R (Sn+1; ∆ttarget, S
n).

Figure 8.1(b) illustrates the proposed algorithm pictorially on the hypothetical

solution path similar to that in Figure 8.1(a). The solution path emanates from the

initial point p0 = (Sn, 0). We want to find the solution for a target timestep ∆ttarget.

The proposed algorithm defines a convergence neighborhood about the solution path,

so that points, pint = (Sint,∆tint), inside the neighborhood are deemed to be close-

enough solutions for their timestep component, ∆tint. That is, Sint is either a solution

to a timestep of ∆tint, or it is a good starting guess for a standard Newton iteration

starting from Sint for a timestep of ∆tint. Starting from the initial point, p0, from

which the solution path emanates, we can compute the N + 1-dimensional tangent

vector, δ̂1. An appropriate step-length along the tangent vector is selected such that

the next iterate remains within the convergence neighborhood. In the figure, this

iterate is denoted p1. The tangent update is linear, p1 = p0 + αδ̂1, where α ≥ 0 is

called the tangent step-length. Note that since tangents, δ̂i, and all iterates, pi, are

augmented variables in both the state and the timestep size, these iterations evolve

timestep as well as the solution. Similarly, we may repeat this process to obtain the

next point p2. At this point, which is near the boundary of the convergence neigh-

borhood, we find that the next tangent step-length, which keeps the next iterate

within the convergence neighborhood, is too small or zero. In this case, the Contin-

uation Newton (CN) algorithm applies a Newton Correction step, N1, as illustrated

in Figure 8.1(b). This Newton correction is evaluated at the current timestep size,

and brings the iterates closer to the solution path at point p3. The iterate, p3, is

guaranteed to be close to the solution path because the convergence neighborhood is

chosen so that it is contained within the contraction region of Newton’s method. We

can continue with tangent steps thereon.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.143

By construction, the sequence of iterates, pi, are all close-enough solutions to their

associated timesteps. The guarantee of convergence for all times is also supported

by the choice of the convergence neighborhood. As a result, any necessary corrective

Newton steps, Nj, always contract toward the solution path. Since the initial guess

to such corrective steps is already a close-enough solution by construction, a single

Newton step can be guaranteed to reduce the residual.

In practice, the CN process can be continued until either the target timestep size

is attained, or the maximal number of iterations allowed has been expended. In

the latter case, the final CN iterate is a close-enough solution to its corresponding

timestep size. We can accept this solution and its timestep size, and continue onto the

next simulation timestep. Subsequently, no timestep chop selection is ever necessary,

and no computational effort is wasted.

Algorithm 4 prescribes the general CN process to solve a target timestep ∆ttarget

given an old state Un, which may involve many unknowns.

Algorithm 4 uses several sub-algorithms, some of which have already been dis-

cussed earlier; the Appleyard safe update performs a cell-wise saturation update along

the tangent direction, and the Modified Appleyard Newton corrector and solver per-

forms a Newton process using the Modified Appleyard heuristic. In Algorithm 4,

local Newton corrections to bring points closer to the solution path are performed

by a Newton solver, except that a different looser convergence tolerance is used.

Specifically, the corrector convergence tolerance only needs to be smaller than, or

equal to, the convergence neighborhood tolerance. The remaining sub-algorithms

are SOLVE-TANGENT, which computes the normalized tangent update vector, δ̂,

SELECT-TANGENT-STEP-LENGTH, which performs a search along the tangent

for the largest step which remains within the convergence neighborhood, and IS-

WITHIN-NEIGHBORHOOD, which tests whether a point is inside the convergence

neighborhood. These three sub-algorithms are developed next.

Next, we develop the methods to compute tangent updates and to select step-

lengths that lie within a convergence neighborhood.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.144

Algorithm 4 CONTINUATION-NEWTON-STEP(Un,∆ttarget)

Require: ∆ttarget ≥ 0 and Un ∈ RN

Ensure: F (U,∆t;Un) = 0, 0 < ∆t ≤ ∆ttarget, and, niter < Nmax

niter ← 0
∆t← 0
U ← Un

while niter < Nmax, and, ∆t < ∆ttarget do

δ̂ ← COMPUTE-TANGENT(U,∆t, Un)

α← SELECT-TANGENT-STEP-LENGTH
(
U,∆t, δ̂, Un

)
W ← U
for i = 0 to i = N do
W (i)← APPLEYARD-SAFE-UPDATE

(
W (i) , αδ̂ (i)

)
end for
∆t2 ← αδ̂ (N + 1)
niter ← niter +1
if IS-WITHIN-NEIGHBORHOOD(W,∆t2, U

n) then
U ← W
∆t← ∆t2

else /* No tangent step-length is admissible in convergence neighborhood */
U,Nnewton ← MODIFIED-APPLEYARD-NEWTON-
CORRECTOR(U,∆t;Un)
niter ← niter + Nnewton

end if
end while
U,Nnewton ← MODIFIED-APPLEYARD-NEWTON-SOLVER(U,∆t;Un)
niter ← niter + Nnewton

return U , ∆t, and, niter

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.145

8.2.2 Parameterizing and following the solution path.

With the assumption that the N -dimensional residual equations have a unique solu-

tion for every timestep, we can parameterize the solution and timestep pairs along

a single scalar λ ≥ 0. That is, the N -dimensional state solution vector and cor-

responding timestep form an N + 1-dimensional space, and the components are

considered as functions of a single scalar, λ, so that any point can be written as

p (λ) = (U (λ) ,∆t (λ)). We want the solution path in the (U,∆t) space to emanate

from the old state of a given timestep. So for λ = 0, we have the point po = (U0, 0),

where U0 is the initial state vector of the timestep. We write the residual equations

in terms of this parametrization as,

R (U (λ) ,∆t (λ) ;Un) = 0. (8.2.1)

The total derivative of the residual vector with respect to the scalar λ prescribes

the tangent to level-curves in the residual value. Since the particular level-curve of

interest is the zero residual level curve (the solution path), we can write,

0 =
dR

dλ
= J

dU

dλ
+

∂R

∂∆t

d∆t

dλ
, (8.2.2)

where, J is the same N ×N Jacobian matrix that would have been used in a Newton

method, except that it is now interpreted as a function of timestep as well as state.

That is, while within a Newton iteration, the Jacobian is always evaluated using the

target timestep, here, the Jacobian may be evaluated using any other timestep size.

The Jacobian’s elements are defined as J(i,j) =
dF(i)

dU(j)
, and the N -dimensional vector

dR
d∆t

in Equation 8.2.2 is the derivative of the residual vector with respect to timestep.

Since the initial point on the zero level-curve is known (e.g. the solution from the

previous timestep), the initial condition for the system is well-defined. Combining

this initial condition with Equation 8.2.2, we obtain,

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.146

J (U,∆t;U0) dU
dλ

+ d
d∆t

R (U,∆t;U0) d∆t
dλ

= 0

U(λ = 0) = U0

∆t(λ = 0) = 0

. (8.2.3)

Equation 8.2.3 describes the dynamics of motion along the solution path in (U,∆t)

space emanating from the initial point (U0, 0). In this context, the parameter λ ≥ 0

is the arc-length along the solution path in its tangential coordinates. Geometrically,

the (N + 1)-dimensional vector δ =
(
dU
dλ
, d∆t
dλ

)
is the tangent to the residual level

curves. When the tangent is evaluated at a point on the solution path, which is the

zero residual level curve, it is a tangent to the solution path itself.

The solution of a nonlinear residual for any timestep can be computed by numer-

ically integrating the corresponding initial value problem given by Equation 8.2.3 up

to λ = λ∗ for which the timestep is equal to the target value; i.e. ∆t (λ∗) = ∆ttarget.

This, however, is not the objective. We are interested in reaching the solution for the

target time step as quickly as possible. Consequently, we should follow the solution

path in (U,∆t) space only loosely and with as little computational effort as possible.

8.2.3 Computing the tangent to any point on a solution path.

The key computational expense of a CN iteration is in evaluating the tangent vectors

to the solution path. The cost is precisely that of performing a single Newton iter-

ation, and involves the solution of the Jacobian matrix. In the previous section, we

derived a mathematical parameterization of solution paths along a single tangential

coordinate, λ ≥ 0. By substituting this parametrization into the residual, and requir-

ing a zero residual along the curve, we derived the equations of motion that define the

curve. Yet, Problem 8.2.3 is under-determined; we have N equations for N + 1 un-

knowns. The additional unknown is the timestep size. Thus, an additional equation

is necessary to close the system. Without further insight into the problem, we could

choose one of several alternatives to close the system, as long as the resulting problem

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.147

is consistent. One example is to require that the norm of the tangent be unity (e.g.

[3, 2, 61]); that is,
∥∥(dU

dλ
, d∆t
dλ

)∥∥ = 1. Another is to enforce some sort of inequality

constraint on some elements of the tangent. Not only are such alternatives clearly

computationally undesirable, but they also do not exploit any inherent properties of

the physics. In this particular setting, the additional equation could be chosen to say

something about the rate of change in timestep size with respect to arc-length along

the solution path. Something certain about solution paths to well-posed problems is

that d∆t
dλ

> 0. This is the case, since otherwise uniqueness is violated.

Enforcing this condition algebraically is quite simple. We require that d∆t
dλ

= C >

0, where C is any positive constant. To compute the N + 1-dimensional tangent

vector, we solve, J dR
d∆t

0 1

 dU

dλ

d∆t
dλ

 =

 0

C

 , (8.2.4)

where the Jacobian, J , is an N by N matrix, the timestep derivative of the residual,
dR
d∆t

, is an N -dimensional vector, and the tangent component along timestep size, d∆t
dλ

,

is a scalar. Notice that the (N + 1) × (N + 1) system in Equation 8.2.4 is always

solvable, since the Jacobian itself is assumed to be always solvable. The Jacobian

is well conditioned in the vicinity of the solution path. This is because all solution

points are stable fixed points of the Newton Flow for a fixed timestep, and moreover,

we already know that the solution to the timestep size tangent component, d∆t
dλ

, is

C > 0.

The positive constant, C, is chosen arbitrarily. The specific choice is inconsequen-

tial, since we have the unique, consistent direction of the tangent vector, and we can

select any length along it. To be precise, we can normalize the computed tangent,

δ =
(
dU
dλ
, d∆t
dλ

)
, as follows;

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.148

δ ← C.
(
−J−1 dR

d∆t
, 1
)T
,

δ̂ ← δ
‖δ‖ .

(8.2.5)

This can always be done because C is positive, and so the tangent norm is bounded

away from zero. This normalization is valid even when the solution is at a steady

state. Equation 8.2.5 provides a computationally attractive way to compute level-

curve tangents at points near the solution path. At such points, the Jacobian is

numerically well-conditioned, since it is evaluated in the vicinity of a unique solution,

and it has the same structure as standard reservoir simulation Jacobian matrices.

Algorithm 5 prescribes the details of computing the tangent vector at a point (U,∆t)

close to the solution path emanating from the point (Un, 0).

Algorithm 5 COMPUTE-TANGENT(U,∆t, Un)

Require: ∆t ≥ 0 is a timestep size for state U ∈ RN from the initial state Un ∈ RN

Ensure: δ̂ ∈ RN+1 is the unit tangent to the augmented solution curve emanating
from (Un, 0) at the point (Un,∆t)
Fix a positive constant C. The choice C =

√
εmach, where εmach is the machine

precision, can be used for numerical conditioning.

C ← max

(
C, 1

‖ ∂
∂∆t

R(U ;∆t,Un)‖

)
δu ← −CJ−1 ∂

∂∆t
R (U ; ∆t, Un)

δ∆t ← C
δ ← (δu, δ∆t)

T

δ̂ ← 1
‖δ‖δ

return δ̂

Note that the value of the constant C is chosen as the inverse of the norm of the

timestep derivative of the residual system. This improves the numerical scaling. The

Jacobian matrix, J , need not be inverted explicitly, and any choice of efficient reservoir

simulation linear solver can be used. Here we focus on the nonlinear convergence

aspects, and we apply a direct sparse solver with partial pivoting (see [48]).

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.149

8.2.4 Defining a convergence neighborhood.

A key component of the CN algorithm is having a quantitative measure of proximity

to the solution path in the augmented space. A tight measure results in iterates that

are accurate solutions, but may result in poor computational efficiency as the solution

path in the (U,∆t) space is needlessly traced in detail. On the other hand, a loose

tolerance may produce iterates that are farther away from the solution, requiring more

Newton corrective steps. Accordingly, one objective is to select this proximity measure

so that points within the neighborhood around the (U,∆t) solution path provide good

starting points for a Newton corrective process for their corresponding timestep. A

second objective is to select this neighborhood so that there is a computationally

inexpensive procedure to test whether a given point is within it or not.

We denote the solution path emanating from p0 = (U0, 0) ∈ RN+1 as the set

of points C = {p (λ) = (U (λ) ,∆t (λ)) : R (U (λ) ,∆t (λ) ;U0) = 0, λ ≥ 0}. Three

measures and their corresponding convergence neighborhoods, N , maybe defined as

follows:

• Residual or material balance norm. A point is in the neighborhood pro-

vided that its residual, or material balance norm, is less than a specified toler-

ance; p ∈ N if and only if ‖R (p)‖ ≤ εtol.

• Absolute or maximum change tolerance estimates. At any point (U,∆t),

the norm of the first Newton step, ‖−J−1R (U,∆t;Un)‖, toward the solution

path can be related to the norm of the absolute error. In particular, it is a

linearized estimate that becomes more accurate as a measure of absolute error

within the vicinity of the solution path.

• Jacobian matrix norm or curvature estimates. Within the convergence

basin of the Newton Flow, the Jacobian matrix induces a Lipschitz property on

the residual. That is, within the neighborhood of the solution, the curvature

of the residual is bounded. Using this property, a computational estimate of a

Kantorovich condition on the Jacobian matrix norm can be used to estimate

whether the point in question is a good point to start a Newton iteration (see

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.150

for example [25, 52]).

Residual based measures require the computation of the residual only, and they

are accurate measures of proximity if one is close to the solution. Residual measures

alone, however, do not necessarily guarantee favorable Newton Convergence proper-

ties. Jacobian matrix norm measures invariably require computing the Jacobian and

provide estimates of the local convergence properties of a Newton iteration. They

do not measure proximity directly, however. Absolute error estimates are the most

computationally expensive requiring the computation of a Newton step. Absolute

error measures can combine more accurate measures of both proximity to the solu-

tion, as well as of convergence rate properties. A combination of these three broad

types of measures may be used to ensure robustness, while trading off computational

performance. Note that the most strict criterion is to use a residual tolerance so that

every point in the neighborhood of the augmented solution path is itself an acceptable

solution for the residual equations. While such a strict criterion will always gener-

ate actual solution iterates, it may lead to needlessly following the solution path too

closely, and that can increase the number of continuation steps per target timestep.

In this work, we apply a residual tolerance criterion only. Algorithm 6 describes the

details of testing whether a given point (U,∆t) is within the convergence neighbor-

hood about the solution path emanating from (U0, 0). The choice of residual tolerance

cut-off is subjective. Accepting the locally quadratic convergence rate of Newton’s

method, we use a tolerance that is one or two orders of magnitude looser than that

required to judge if an iterate is a valid solution.

8.2.5 Step-length selection along tangents.

Another component of the CN algorithm is the selection of an appropriate step-length

along a tangent vector. The CN update is written as, U

∆t

k+1

←

 U

∆t

k

+ α

 δ̂U

δ̂∆t

 , (8.2.6)

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.151

Algorithm 6 IS-WITHIN-NEIGHBORHOOD(U,∆t, U0)

Require: ∆t ≥ 0 is a timestep size for state U ∈ RN from the initial state U0 ∈ RN

Ensure: Returns whether U is within the convergence neighborhood at timestep ∆t
from state U0

Fix a positive tolerance εcnrtol. A typical choice may be εcnrtol =
√
εrtol, where εrtol

is a residual tolerance used for a Newton correction processes.
if ‖R (U,∆t;U0)‖ < εcnrtol then

return true
else

return false
end if

where α is the positive step-length.

A larger step-length results in a larger timestep advancement, since the timestep

component of the tangent, δ̂∆t, is always positive. This implies a higher computational

efficiency as the timestep advancement per tangent computation increases. On the

other hand, a larger step-length also implies a larger absolute error away from the

solution path. Using continuity around solutions, theory guarantees that for small

step-lengths from points on the solution curve, any residual tolerance may be satisfied.

In practice, CN iterates are not exactly on the solution path, however, and for a given

tangent, there may be no positive step-length that results in an acceptable point that

lies within the convergence neighborhood; pk+1 ∈ N . In such cases, the step-length

selection algorithm must trigger Newton correction steps. This switch to Newton

corrections is dictated by the nature of the physics being modeled. For example,

slowly transient solutions can be stepped through with larger tangent step lengths,

while faster transients may require shorter tangent steps.

In practice, a minimal step-length, αmin, is chosen as a parameter. Note that

from Equation 8.2.6, for a step-length α, the corresponding updated timestep size is

simply ∆tk + αδ̂∆t. We can choose αmin to satisfy a minimal timestep advancement

per tangent step, ∆tmin.

There may be many step-lengths that are larger than the minimum, α ≥ αmin,

that keep the new iterate within the convergence neighborhood. In this work, the

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.152

objective of the step-length algorithm is to select the largest such step-length in or-

der to maximize the timestep advancement achieved per continuation step. Since

constrained univariate optimization is generally more efficient than an unconstrained

counter-part, we also set a maximal step-length parameter, αmax. Choices for the

maximal step-length parameter, αmax, can be made in several ways. One approach

could be to choose the smallest step-length that makes all updated normalized vari-

ables reach their physical range. Another approach, which is used throughout the

examples in this work, is to select it so that the tangent timestep update satisfies a

maximal timestep advancement per tangent step, ∆tmax.

The univariate optimization problem for the tangent step-length can be expressed

as,

maximize α

subject to,

pk + αδ̂k ∈ N ,

α ∈ [αmin, αmax]

(8.2.7)

In the examples in this work, we apply a derivative free backtracking algorithm to

solve this problem. The algorithm used to solve the univariate problem is derivative

free. Each iteration simply requires the evaluation of the residual. We apply a back-

tracking approach that starts by evaluating whether αmin results in an update which

lies within the convergence neighborhood. If this is not the case, the search is termi-

nated, and Newton corrections are triggered. Otherwise, backtracking from αmax, we

search for the first step-length that produces an update within the neighborhood. The

maximum number of backtracking steps is a parameter of the algorithm. Increasing

this quantity may result in a solution with fewer tangent steps at the expense of more

residual evaluations performed per tangent step. Algorithm 7 describes the details of

this process.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.153

Algorithm 7 SELECT-TANGENT-STEP-LENGTH
(
U,∆t, δ̂, Un

)
Fix a maximum number of backtracking iterations; Itermax ≥ 1.
Fix a minimal timestep size advancement per tangent step, ∆tmin > 0. This can
be based on a suitable CFL number such as one.
Fix a maximal timestep size advancement per tangent step, ∆tmax > ∆tmin. A
typical CFL number may be ten.
αmin ← ∆tmin

δ̂(N+1)

αmax ← ∆tmax

δ̂(N+1)

∆← αmax−αmin

Itermax

α← αmax
do

for i = 0 to N do
U∗ (i)← APPLEYARD-SAFE-UPDATE

(
U (i) , αδ̂ (i)

)
end for
∆t∗ ← ∆t+ αδ̂ (N + 1)
is-converged ← IS-WITHIN-NEIGHBORHOOD(U∗,∆t∗, Un)
α← α−∆

until α < αmin −∆ or is-converged = true
return α

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.154

8.3 Computational Examples

8.3.1 Single-cell model

For problems with a single unknown, the Continuation-Newton augmented space is

two-dimensional. In order to visualize the solution process, we consider a model

problem that is designed after a single cell view of incompressible two phase flow

through a horizontal domain. This enables us to visualize solution processes in a

three-dimensional space formed by the primary unknown dimension, timestep size,

and the residual value dimension. Figure 8.2 illustrates the setup of this model

problem.

Figure 8.2: Illustration of a model problem designed after a single cell view of two-
phase incompressible flow.

Let S (t) denote the average time-dependent wetting-phase saturation in a fixed

volume of porous media at time t. Equation 8.3.1 is the governing Ordinary Differ-

ential Equation (ODE) for flow through the media assuming a fixed influx qinj.
dS
dt

= qinj − f (S)

S (0) = Sinit

(8.3.1)

We denote the initial saturation as Sinit, and the fractional flow function f is

defined as,

f (S) = S2 1−Ng (1− S)2

S2 +M0
r (1− S)2 , (8.3.2)

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.155

where the Gravity Number, Ng, and the end-point Mobility Ratio, M0
r , are con-

stants.

Let Sn denote the numerical approximation of the wetting-phase saturation in the

cell at time-step n. The time at the nth time-step is t = n∆t, where ∆t > 0 denotes a

fixed time-step size. Equation 8.3.3 is the discrete implicit residual for this problem.
Sn+1 − Sn + ∆t (f (Sn+1)− qinj)

S0 = Sinit

(8.3.3)

Figure 8.3: The residual curves of a single cell problem evaluated for various timestep
sizes (solid blue lines). Each residual curves intersects the zero residual plane at
one solution point (red square markers). The locus of all solution points forms the
Solution Path (solid red line).

At each time-step of a simulation, Equation 8.3.3 must be solved for Sn+1, given

Sn. We consider the specific case of horizontal flow, Ng = 0, through a domain

with a zero initial saturation, Sinit = 0, a constant injection flux, qinj = 1, and an

end-point mobility ratio of M0
r = 10. Figure 8.3 shows plots of the nonlinear residual

curves that are obtained by evaluating the residual (8.3.3) using five different time-

step sizes. For a timestep size of zero, the residual curve is linear as it is simply the

accumulation component. For larger timestep sizes, the residual curve is essentially

a re-scaled form of the non-monotone flux function. In the figure, each residual curve

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.156

intersects a zero residual level at a unique solution point that is marked with a red

square marker. The locus of all solution points for every possible timestep size is the

Solution Path, and in the figure it is depicted by the solid red line.

Figure 8.4: Illustration of the sequence of iterates obtained while solving a timestep
using the method in [41]. The solid circular markers denote the five iterates that
occur during the solution process. The dashed arrows are the enumerated sequence
of steps taken.

Owing to the non-monotone nonlinear structure of the flux function, the standard

Newton iteration fails to converge for all but the smallest timestep sizes. The safe-

guarded iterations introduced in [41] guarantee convergence for any timestep size of

this problem. Moreover, the rate of convergence using the algorithms in [41] are likely

the fastest available using a general Newton-like iteration. Figure 8.4 illustrates the

sequence of iterations obtained by using the second modified algorithm in [41] to solve

a timestep, ∆t = 150. Five iterations are necessary for convergence in this case. The

first iteration attempts to cross the inflection point and the sign of the curvature

changes at the two iterates. The algorithm selects the first iterate as the point in

between denoted by the solid black circle in the figure. The following four steps do

not cross the inflection point and therefore are unaltered Newton steps.

Figure 8.5 illustrates the sequence of iterates obtained using the Continuation-

Newton algorithm. For this case, three tangent steps and two Newton corrections

are required, giving a total of five iterations. The model example illustrates a key

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.157

Figure 8.5: Illustration of the sequence of iterates taken to solve a timestep using the
Continuation-Newton algorithm. Steps three and five are Newton correction steps,
while the remainder are tangent steps.

qualitative difference between using the Continuation-Newton algorithm and Newton-

like methods. While Newton-like methods need to be safeguarded to resolve nonlinear

structure in the residual curve, Continuation-Newton methods need to safely traverse

strong nonlinearity in the Solution Path. In this example, the CN iterates are within

a convergence neighborhood that excludes the inflection points. On the other hand,

the initial rapid change in saturation implies strong curvature in the solution path,

which in turn force the use of smaller tangent steps.

8.3.2 Buckley-Leverett models

We consider two illustrative cases of the Buckley-Leverett Problem, which is described

in Section 6.1.2. The first case is a horizontal piston-like displacement, and the second

includes gravity effects and exhibits counter-current flow. In both cases, the injection

saturation is one, Sinj = 1, and the relative permeability functions are quadratic with

end-points of zero and one.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.158

Horizontal displacements.

For this case, the end-point mobility ratio M0 is chosen as 10, the Gravity Number

Ng is chosen as 0 for a horizontal problem, the initial saturation, Sinit, is zero, and

N = 150.

We illustrate the CN concepts by applying a step of the algorithm for this problem,

starting from a simulation time of 0.5. At this time, the saturation state, denoted S0,

and the tangent update δ̂0 computed using Algorithm 5, are presented in Figure 8.6.

Figure 8.6: Starting iterate and tangent update for a 1-dimensional Buckley-Leverett
problem with no gravity.

The CN starting iterate to solve a target timestep from this time consists of the

saturation profile, S0, in Figure 8.6, augmented with a timestep size of zero; that is

p0 = (S0, 0). The solution path emanates from p0, and is in an N + 1-dimensional

space. The tangent to the solution path at the starting point is the state update

component plotted in Figure 8.6, augmented with d∆t
dλ

, which in this case is 0.336.

The next CN iterate is a step from the starting point, along a linearly scaled update

of the tangent. This update is written as p1 ← p0 +αδ̂, where the scalar step-length,

αmin ≤ α ≤ αmax, is to be selected by Algorithm 7.

We illustrate the qualitative nature of this tangent update using two different

step-lengths, α = 0.015 and 0.089. For each step-length, the corresponding tangent

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.159

update timestep size is αd∆t
dλ

, and in this case, these are 0.005 and 0.03. More-

over, defining the Courant-Friedrichs-Lewy (CFL) Number as ∆t
∆x

max |f ′ (S) |, these

step-lengths correspond to 2.25 and 13.35 CFL. Figures 8.7(a) to 8.7(b) show the

initial saturation state, as well as the updated states obtained by taking a single

tangent step using each of the two selected step-lengths. The solutions for each of

the two timestep sizes which correspond to the two step-lengths are also shown in

Figures 8.7(a) to 8.7(b). In these figures, the solutions are obtained by a Newton

process, which requires several iterations, whereas the tangent steps are single iterates

in the CN algorithm. Qualitatively, it is observed that as the step-length is increased,

the tangent step becomes a worse approximation of its corresponding solution, as

expected. The objective is to choose the largest step-length that still gives a good

approximation (i.e., is close to the solution path).

Figure 8.8 shows the trend in the residual norm for various choices of step-length

along the tangent. The figure also shows the residual norms obtained using the old

state as an initial guess for the corresponding timestep size of the continuation step-

length. Within smaller step-length ranges, there is higher confidence in the tangent

update solution than in the old state. The step-length selection algorithm attempts to

select the largest step-length that retains a residual below a certain tolerance. For low

residual tolerances, which are typically used to define a convergence neighborhood,

the continuation tangent step affords a timestep advancement that is (1) known a

priori through the relation ∆t1 ← ∆t0 + αd∆t
dλ

, and (2) always closer to the solution

than the old state is.

In terms of the overall performance of CN for a single timestep, Figure 8.9(a)

shows the number of iterations required to solve a set of different target timestep

sizes ranging up to a size corresponding to over 440 CFL. For each target timestep

size, starting from the simulation time 0, the iterations are performed using the (1)

Appleyard Newton approach, (2) Modified Appleyard Newton method, and (3) the

proposed CN algorithm. In Figure 8.9(a), we show the split between the number of

iterations taken in CN tangent steps and in CN Newton corrections.

The standard Appleyard-Newton algorithm does not converge for any of the

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.160

(a)

(b)

Figure 8.7: For a particular time, the current state is depicted with circle markers,
the tangent update with star markers, and the actual solution with square markers.
This is presented for two different continuation step-lengths.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.161

Figure 8.8: Residual norms for various step-lengths along a single tangent.

timestep sizes attempted. Moreover, while in general, the CN and Modified App-

leyard approaches are expected to perform on par, in this case the CN algorithm

requires fewer overall iterations. This is the case since the additional dimension of

the tangent update, d∆t
dλ

, provides a temporal scaling regarding the range of validity

of an update, whereas scaling a Modified Appleyard Newton step never influences

the timestep which it attempts to solve. Figure 8.9(b) shows the number of residual

evaluations required to converge a timestep by each of the methods. Owing to the

step-length search component of the CN algorithm, it requires more residual evalua-

tions. The precise number required is bounded by the maximum allowed backtracking

steps per tangent step. In this case they were limited to 5. Note that although in this

case, the proposed algorithm performs on par with a state-of-the-art solver, each of

the CN iterates is associated with a time-step size. Subsequently, in return for a few

additional evaluations of the residual, the CN algorithm does not require timestep

chops nor will it waste any iterations over the course of an entire simulation.

Down-dip displacements.

For this case, the end-point mobility ratio, M0, is chosen as 0.5, and the Gravity

Number, Ng, is chosen as -5 for a down-dip problem. The number of grid blocks used

is N = 150. The initial condition has a saturation of one up to a distance of 0.34,

and a saturation of zero elsewhere.

We consider a single timestep starting at the time of 0.1, and we illustrate the

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.162

(a) Number of Jacobian evaluations and linear solves re-
quired for convergence using CN and Modified Appleyard
Newton

(b) Number of residual evaluations required for convergence
using CN and Modified Appleyard Newton

Figure 8.9: Convergence characteristics of the CN method compared to Modified
Appleyard Newton.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.163

components of a single CN iteration. The current saturation state and the computed

tangent update are shown in Figure 8.10. In this case, counter-current flow of the

two phases results in negative components of the tangent vector. Moreover, the dis-

placement involves spreading wave portions. For two step-lengths corresponding to

timestep sizes of 0.001 and 0.006, Figures 8.11(a) and 8.11(b) show the initial state,

the tangent iterate, and the corresponding complete solution for the timestep. Defin-

ing the Courant-Friedrichs-Lewy (CFL) Number for this problem as ∆t
∆x

max |f ′ (S) |,
the timesteps correspond to 0.7 and 4.2 CFL. Qualitatively, the linear tangent up-

dates with large step-lengths are worse approximations in the sense that they display

sharp changes in saturation.

Figure 8.10: A starting point for a continuation timestep and the corresponding initial
tangent vector.

Figure 8.12 shows the relationship between the computed residual norm and in-

creasing step-length. Once again, for smaller residual tolerances, the tangent approx-

imations provide better estimates than the old state.

Figures 8.13(a) and 8.13(b) show the overall performance for various timesteps

from the start of the simulation. The largest timestep size tested is 0.2, which cor-

responds to a CFL number of 140. In this case, the standard Appleyard Newton

method converges only for the smallest timestep size. Moreover, beyond a timestep

size of 0.04, corresponding to a CFL number of 30, the CN algorithm requires more

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.164

(a)

(b)

Figure 8.11: For a particular time, the current state is depicted with a solid line, the
tangent update with a dotted line, and the actual solution with a dashed line. This
is presented for two different continuation step-lengths.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.165

Figure 8.12: The residual norm versus step-length size using a tangent step, and the
initial state as a guess.

iterations than the Modified Appleyard Newton method. This is due to the fact that

the solution involves a spreading wave that influences the entire domain.

CHAPTER 8. A CONTINUATION-NEWTON ALGORITHM ON TIMESTEP SIZE.166

(a) Number of Jacobian evaluations and linear solves re-
quired for convergence using CN and Modified Appleyard
Newton

(b) Number of residual evaluations required for convergence
using CN and Modified Appleyard Newton

Figure 8.13: Convergence characteristics of the CN method compared to Modified
Appleyard Newton.

Chapter 9

Computational Examples

The Localization algorithm is combined with Continuation-Newton such that all lin-

ear solution processes, whether they be for Newton steps or for Tangent steps, use

the Localization routine. A suite of cases of two-phase flow with gravity is used to

investigate the properties of the proposed Adaptively Localized Continuation Newton

(ALCN) algorithm.

9.1 Two-phase compressible flow in two dimen-

sions

The problem involves two-phase compressible flow in two-dimensions. Gravity ef-

fects are superposed with nonlinear relative permeability models and injection and

production wells in order to stress the nonlinear solution aspect. The unknowns are

pressure, p (x, y, t), and water saturation, Sw (x, y, t). The governing equations for

the conservation of oil and water appear in Equations 9.1.1 and 9.1.2 respectively.

[φ (1− Sw)]t −∇
[
K
Kro

µo
∇ (p+ γoh)

]
= qo (9.1.1)

[φSw]t −∇
[
K
Krw

µw
∇ (p+ γwh)

]
= qw (9.1.2)

167

CHAPTER 9. COMPUTATIONAL EXAMPLES 168

The compressibility in the problem is due to a pressure-dependent porosity relation

as specified by Equation 9.1.3.

φ = φref (1 + cr (p− pref)) (9.1.3)

Other parameters in this problem are;

• A diagonal permeability tensor, K, which may be heterogeneous.

• µw, and µo, denoting constant water and oil viscosity respectively.

• Krw, and Kro, denoting the water and oil relative permeability described by

Equations 6.1.6 and 6.1.7.

• γw, and γo, denoting the constant water and oil gravimetric density.

• h, denoting depth along the direction of gravity.

We apply a fully implicit discretization with standard single-point phase-based

upstream weighting. The oil conservation equation is aligned with pressure, and

the water equation with water saturation. We assume no flow boundary conditions

across the rectangular domain of dimensions Lx and Ly. A rate-controlled injector

and Bottom Hole Pressure (BHP) producer are introduced, and are completed in

single blocks. The initial condition maybe transient, allowing the specification of an

arbitrary initial saturation distribution. In such cases, the pressure distribution is

initialized according to gravity and a specified pressure at the top of the reservoir.

9.1.1 Examples

We present results for two representative cases. The first is a gravity segregation

problem with a non-stationary initial condition. This case is known to stress the

nonlinear solution aspect of the transport. The second case superposes gravity effects

and nonlinear relative permeability with injection and production wells. Both cases

share the following common parameters. The square reservoir is assumed to have

no flow boundaries, with dimensions of 100ft, and is discretized using 100 blocks

CHAPTER 9. COMPUTATIONAL EXAMPLES 169

along both dimensions. An initial pressure of 500psi is applied to the top of the

reservoir. We assume a uniform initial porosity of φref = 0.4 at a reference pressure

of Pref = 14.7 psi, a rock compressibility of cr = 1E − 06psi−1, and an isotropic

permeability field of 500 mD. The normalized relative permeability models used are

quadratic, and are scaled to end-points of zero and one. The oil and water have

gravimetric densities of 50 and 100, and viscosities of 5cP and 1cP respectively. The

residual 2-norm convergence tolerance of 1E-06 is applied, and a CN convergence

neighborhood tolerance of 1E-03 is used.

Pure gravity segregation.

We consider a case of pure gravity segregation where initially, oil saturates the lower

portion of a reservoir, and water saturates the top. Since the boundary conditions are

no flow, the problem involves bouncing waves that interact every time they collide

with each other, or with the top and bottom reservoir boundaries. The steady state

solution is an equilibrium with oil on the top. Figures 9.1(a) through 9.1(c) show oil

saturation snapshots over the course of a simulation.

In order to derive an appropriate cell-based CFL number, we assume incompress-

ible flow and a zero total velocity. Given these assumptions, the cell-based CFL

number for cell i, is given as,

CFLi = ∆t
K (γw − γo)
φiµo∆y

maxF ′ (S), (9.1.4)

where F ′ (Si) is the slope of the following flux function,

F (Si) =
Kro

1 + Kro
Krw

µw

µo

. (9.1.5)

Figure 9.2(a) shows the sorted distribution of CFL numbers throughout the mesh.

These cell-based CFL numbers are computed using the initial condition. For timestep

sizes greater than 4.5 days, all of the cells in the domain experience CFL numbers

that are greater than one.

CHAPTER 9. COMPUTATIONAL EXAMPLES 170

(a) 0 days

(b) 1350 days

(c) 4500 days

Figure 9.1: Oil saturation snapshots over simulations for a gravity segregation case.

CHAPTER 9. COMPUTATIONAL EXAMPLES 171

Figure 9.2(b) shows the iteration count to convergence over a series of experi-

ments. In each experiment, a target timestep is set from the initial condition, and

the corresponding system is solved. A maximum number of 150 iterations is allowed,

and an iteration count of 150 implies lack of convergence. The standard Newton and

Appleyard-Newton methods failed to converge for the smallest timestep size tested.

Figure 9.2(b) shows that the proposed algorithm provides improved asymptotic con-

vergence rates, as well as robustness compared to the Modified-Appleyard-Newton

method. Figure 9.3 shows the average fraction of the total unknowns that is solved

for at each iteration using ALCN. The fractions vary with timestep size since the

locality of the saturation changes also vary in time. As the segregation process ap-

proaches steady state, we observe greater locality, whereas at early times, the satura-

tion over the entire domain experiences a slowly varying spreading wave. Moreover,

since the Newton correction steps within the ALCN algorithm are computed within

the convergence neighborhood, we see that they only modify a small percentage of

the unknowns.

Gravity effects coupled to well-driven flow.

Next, we consider a case that involves both gravity segregation and well-driven flow.

Initially, the reservoir is saturated with oil in the upper half and water in the lower

half. A single block injector is completed in the upper-right corner, and a producer

is completed in the lower-left. A constant water injection rate of 10 BBL per day is

specified. The producer is operated with a constant Bottom Hole Pressure of 500psi.

Figures 9.4(a) through 9.4(c) show water saturation snapshots at 0, 120, and 245

days over the course of a simulation.

The results in Figure 9.5 illustrate the computational effort required to solve a

full simulation using a single timestep. Various timestep sizes are tested using the

proposed Adaptively-Localized-Continuation-Newton (ALCN) algorithm, as well as

the Modified Appleyard Newton method. A dimensionless measure of these timestep

sizes is the Cell Pore Volumes Injected (CPVI), which for this case corresponds to

10 CPVI for a timestep size of 1 day. Figure 9.5(a) shows the count of linear solves

required to converge a timestep using both methods. Once again, the proposed ALCN

CHAPTER 9. COMPUTATIONAL EXAMPLES 172

(a) Sorted distribution of CFL numbers throughout the do-
main

(b) The number of iterations required to solve a set of sample
timestep sizes using the Modified Appleyard heuristic, and
the proposed ALCN algorithm.

Figure 9.2: Results for a gravity segregation problem with compressibility.

CHAPTER 9. COMPUTATIONAL EXAMPLES 173

Figure 9.3: The average fraction of unknowns solved for at each iteration using local-
ization.

algorithm provides improved asymptotic convergence rates over the tuned Modified

Appleyard method. Moreover, both the standard Newton and Appleyard Newton

methods fail to converge for the smallest timestep size tested. Figure 9.5(b) shows

the count of residual evaluations required by the solution processes. Note that the

ALCN method does require more residual evaluations due to the step-length selection

component of ALCN.

9.2 Summary

The CN algorithm evolves the residual equations in the augmented (U,∆t) solution

space providing iterates that are solutions to known timestep sizes. Subsequently,

whenever a CN iteration is terminated, we either obtain the solution to the target

timestep, or a solution to a smaller known timestep. The rate of convergence is

empirically shown to be on par with that of state-of-the-art safeguarded Newton’s

methods, whenever such schemes converge. Qualitatively, the number of iterations

required to convergence by both variants of Newton’s method and CN scale with the

dimensionless target timestep. This is because both iterations exploit linearized local

wave propagation speed information. The chief difference is that while Newton’s

CHAPTER 9. COMPUTATIONAL EXAMPLES 174

(a) 0 Days

(b) 120 Days

(c) 245 Days

Figure 9.4: Water saturation snapshots for an unstable injection problem with gravity.

CHAPTER 9. COMPUTATIONAL EXAMPLES 175

(a) The number of linear solves (iterations) required to
solve a set of sample timestep sizes using the Modified Ap-
pleyard heuristic, and the proposed Adaptively-Localized-
Continuation-Newton (ALCN) algorithm.

(b) The number of residual evaluations performed during the
solution of a set of sample timestep sizes using the Modified
Appleyard heuristic, and the proposed Adaptively-Localized-
Continuation-Newton (ALCN) algorithm.

Figure 9.5: Computational effort required to solve a full simulation in one timestep
using the proposed Adaptively-Localized-Continuation-Newton (ALCN) algorithm,
and the Modified Appleyard Newton method.

CHAPTER 9. COMPUTATIONAL EXAMPLES 176

method is oblivious to the nature of the time evolution of the solution within a

timestep, the CN algorithm exploits the evolution of the discrete residual equations

in time.

Chapter 10

Discussion And Future Work

Modern timestep controllers for convergence rely on a posteriori estimates and on

extrapolation models of these estimates in order to anticipate the convergence be-

havior of a Newton-like method to solve an upcoming timestep. Invariably, practical

implementations of such controllers (see for example [59, 38]) necessitate the use

of try-adapt-try-again strategies; try a recommended timestep size, and observe the

resulting convergence behavior. If necessary, adapt the a posteriori estimates using

the observations, and recommend a new, restricted timestep size to try out. This

wasteful strategy is necessary since the a posteriori estimates are not strict bounds

and the extrapolation models are inherently not predictive for nonlinear phenomena.

If available, accurate a priori measures of the asymptotic relation between the non-

linear convergence rate and time-step size can be used to directly without the need

for an extrapolator. This however remains an understudied problem in the context

of large scale nonlinear problems where few locality or smoothness assumptions can

be made in general. In this work, we restrict interest to the types of problems en-

countered in flow through porous media, and in doing so, we exploit the nature of

the underlying physics in order to arrive at an a priori criterion.

We developed and illustrated an algorithm that solves implicit residual systems

using a combination of Newton’s method and a Continuation on timestep size. The

algorithm guarantees convergence for any timestep size, and if the iteration process

is stopped before the target timestep is reached, the last iterate is a solution to a

177

CHAPTER 10. DISCUSSION AND FUTURE WORK 178

smaller known timestep. The performance of the algorithm was illustrated using

several challenging nonlinear problems. Compared to state-of-the-art problem-tuned

heuristic methods, the CN algorithm remains competitive. Additionally, the CN

algorithm does not require wasteful timestep cuts, unlike all Newton variants. More-

over, a localization strategy that is based on solution propagation properties of the

transport equations, is used to reduce the computational cost associated with solving

the linear systems. With the combination of these key ideas, reservoir simulators no

longer require timestep chopping heuristics, no computational effort can be wasted,

and the amount of computation required per iteration can be reduced substantially.

The CN algorithm presented in this work applies a first-order explicit scheme to

follow the solution path loosely. We anticipate increased computational efficiency

through the development of stabilized CN variants which exploit the relationship be-

tween Newton and tangent steps within the augmented space. This may lead to a

characterization of the CN convergence rate in terms of the order of accuracy in ap-

proximating the solution path.

We also anticipate the application of CN in order to introduce timestep control

based on accuracy concerns. That is, the CN algorithm offers a built-in facility to

perform timestep selection for the control of time approximation errors. Since each

iterate solves a larger timestep than its successor, error extrapolation techniques may

be applied directly to dictate which timestep to stop at, thereby providing an a priori

error controller that is built into the solver, and that does not waste computation.

Nomenclature

Abreviations

AD Automatic Differentiation

ADETL Automatically Differentiable Expression Templates Library

AIM Adaptive Implicit Method

ATLAS Automatically Tuned Linear Algebra System

AVSO Automatic Variable Set Object

BHP Bottom Hole Pressure

BLAS Basic Linear Algebra Set

CFL Courant-Friedrichs-Lewy

CN Continuation Newton

EA Eclipse Appleyard

EOR Enhanced Oil Recovery

ET Expression Template

FIM Fully Implicit Method

GPGPU General Purpose Graphics Processing Unit

GPRS General Purpose Research Simulator

IN Inexact Newton

JIT Just In Time

MA Modified Appleyard

MTL Matrix Template Library

OO Operator Overloading

OOAD Operator Overloaded Automatic Differentiation

179

CHAPTER 10. DISCUSSION AND FUTURE WORK 180

OOP Object Oriented Programming

OSKI Optimized Sparse Kernel Interface

PDAE Partial Differential Algebraic Equations

POOMA Parallel Object Oriented Methods and Applications

QN Quasi Newton

SN Standard Newton

SPLC SParse Linear Combination

STL Standard Template Library

Symbols

i = unknown index.

j = index of cell with non-zero material balance.

k = Continuation-Newton iteration index.

n = timestep number.

pk = point in the augmented space.

pint = point in the augmented space that is within the interior of a convergence neigh-

borhood.

tn = time at timestep number n.

C = a positive constant.

J = Jacobian matrix.

M0 = endpoint Mobility Ratio.

Ng = Gravity Number.

R = residual system of nonlinear equations.

S = saturation unknowns.

Sinj = injection saturation.

Sinit = initial saturation.

Sint = saturation state within the interior of a convergence neighborhood.

Un = vector of unknowns at timestep number n.

U0 = vector of unknowns at the beginning of a CN process.

CHAPTER 10. DISCUSSION AND FUTURE WORK 181

α = CN tangent update steplength.

αmax = maximum allowable CN tangent update step-length.

αmin = minimum allowable CN tangent update step-length.

δ = CN tangent in augmented space.

δ̂ = normalized CN tangent in augmented space.

δU = state update component of CN tangent.

δ∆t = timestep update component of CN tangent.

λ = solution path arc-length parametrization.

ν = Newton iteration index.

θ = local attenuation ratio.

∆ν = step-length along a Newton direction.

∆t = timestep size.

∆ttarget = target timestep size.

∆tint = timestep component of a point within a convergence neighborhood in aug-

mented space.

Λ = diagonal weighting matrix for a general safeguarded Newton iteration.

ζ = local scaling constant.

C = solution path in augmented space.

N = convergence neighborhood about a solution path in augmented space.

Bibliography

[1] Alexandrescu, A. Modern C++ Design: Generic Programming and Design

Patterns Applied. The C++ In-Depth Series, Addison-Wesley, MA, 2001.

[2] Allgower, E., and Georg, K. Simplicial and continuation methods for

approximations, fixed points and solutions to systems of equations. SIAM Review

22 (1980).

[3] Allgower, E., and Georg, K. Introduction to Numerical Continuation

Methods. Classics in Applied Mathematics, SIAM, 2003.

[4] Aziz, K., and Settari, A. Petroleum Reservoir Simulation. Elsevier Applied

Science, 1979.

[5] Beckner, B., Hutfilz, J., Ray, M., and Tomich, J. EM: New reservoir

simulation system. In SPE 68116, Proceedings of the 2001 SPE Middle East Oil

Show (March 2001), SPE.

[6] Bendtsen, C., and Stauning, O. FADBAD, a flexible C++ package for

automatic differentiation. Technical Report IMM–REP–1996–17, Department of

Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark,

aug 1996.

[7] Bischof, C., Corliss, G., Green, L., Griewank, A., Haigler, K., and

Newman, P. Automatic differentiation of advanced CFD codes for multidisci-

plinary design. Computing Systems in Engineering 3, 6 (1992), 625 – 637.

182

BIBLIOGRAPHY 183

[8] Bischof, C., Khademi, P., Mauer, A., and Carle, A. Adifor 2.0: auto-

matic differentiation of Fortran 77 programs. Computational Science Engineer-

ing, IEEE 3, 3 (fall 1996), 18 –32.

[9] Bischof, C. H., Roh, L., and Mauer-Oats, A. J. ADIC: an extensible

automatic differentiation tool for ANSI-C. Software Practice and Experience 27

(December 1997), 1427–1456.

[10] Broyden, C. G. A class of methods for solving nonlinear simultaneous equa-

tions. Math. Comp. 19 (1965), 577–593.

[11] Bucker, M., Corliss, G., Hovland, P., Naumann, U., and Norris,

B. On automatic differentiation. In Automatic Differentiation: Applications,

Theory, and Implementations (2006), Springer Lecture Notes in Computational

Science and Engineering.

[12] Bulka, D., and Mayhew, D. Efficient C++: performance programming

techniques. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2000.

[13] Cao, H. Development of Techniques for General Purpose Simulators. PhD

thesis, Stanford University, 2002.

[14] Cao, H., and Aziz, K. SPE 77720, performance of IMPSAT and IMPSAT-

AIM models in compositional simulation. In SPE Annual Technical Conference,

San Antonio (Sept. 2002), SPE.

[15] Chen, Y., and Durlofsky, L. Adaptive local-global upscaling for general

flow scenarios in heterogeneous formations. Transport in porous Media 62 (2006),

157–185.

[16] Christie, M. A., and Blunt, M. J. SPE 72469, Tenth SPE comparative so-

lution project: A comparison of upscaling techniques. SPE Reservoir Evaluation

And Engineering 4 (August 2001), 308–317.

BIBLIOGRAPHY 184

[17] The Computer Modelling Group. STARS User’s Guide.

http://www.cmg.com.

[18] Corey, A. The interrelation between gas and oil relative permeabilities. Pro-

ducers Monthly 19, 1 (1954), 38 – 41.

[19] Corliss, G., Faure, C., Griewank, A., Hascoët, L., and Naumann, U.,

Eds. Automatic differentiation of algorithms: from simulation to optimization.

Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[20] Corliss, G. F., Bischof, C., Griewank, A., Wright, S. J., and Robey,

T. Automatic differentiation for PDEs: Unsaturated flow case study. In Pre-

sented at the 7th International Association of Mathematics and Computer Sim-

ulation (IMACS) International Conference on Computer Methods for Partial

Differential Equations, New Brunswick, NJ, 22-24 Jun. 1992 (1992), H. J. Shih,

W. Schiesser, & J. Ellison, Ed., pp. 22–24.

[21] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Intro-

duction to Algorithms. MIT Press, Cambridge MA, 2001.

[22] Deb, M. K., Reddy, M. P., Thuren, J., and Adams, W. A new generation

solution adaptive reservoir simulator. In SPE 30720 presented at the 1995 SPE

Annual Technical Conference, Dallas (October 1995), SPE.

[23] DeBaun, D., Byer, T., P.Childs, Chen, J., Saaf, F., Wells, M.,

Liu, J., Cao, H., L.Pianelo, Tilakraj, V., Crumpton, P., Walsh,

D., Yardumain, H., Zorzynski, R., Lim, K. T., Schrader, M., Zapata,

V., Nolen, J., and Tchelepi, H. SPE 93274: An extensible architecture for

next generation scalable parallel reservoir simulation. In Proceedings of the 2005

SPE Reservoir Simulation Symposium (February 2005), SPE.

[24] Deuflhard, P. Global inexact Newton methods for very large scale nonlinear

problems. IMPACT of Computing in Science and Engineering 3, 4 (1991), 366

– 393.

BIBLIOGRAPHY 185

[25] Deuflhard, P. Newton Methods for Nonlinear Problems; Affine Invariance

and Adaptive Algorithms. Springer, 2004.

[26] Duff, I. S., Heroux, M. A., and Pozo, R. An overview of the sparse basic

linear algebra subprograms: The new standard from the BLAS technical forum.

ACM Trans. Math. Softw. 28 (June 2002), 239–267.

[27] Fischer, H. Special problems in automatic differentiation. In Automatic Dif-

ferentiation of Algorithms (1991), SIAM, PA.

[28] Forth, S., Tadjouddine, M., Pryce, J., and Reid, J. Jacobian code

generated by source transformation and vertex elimination can be as efficient as

hand-coding. ACM Transactions on Mathematical Software 30 (2004).

[29] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:

Elements of Reusable Object-Oriented Software. Professional Computing Series,

Addison-Wesley, MA, 1995.

[30] Garlan, D., and Shaw, M. An introduction to software architecture. In Ad-

vances in Software Engineering and Knowledge Engineering (Singapore, 1993),

V. Ambriola and G. Tortora, Eds., World Scientific Publishing Company, pp. 1–

39.

[31] Garlan, D., and Shaw, M. An introduction to software architecture. Tech.

Rep. CMU-CS-94-166, Carnegie Mellon University, January 1994.

[32] Gebremedhin, A., Manne, F., and Pothen, A. What color is your Jaco-

bian? Graph coloring for computing derivatives. SIAM Review 47, 4 (December

2005), 629 – 705.

[33] Geoquest, Schlumberger. Eclipse 100 Technical Description 2000A.

http://www.sis.slb.com/content/software/simulation/eclipse-blackoil.asp.

[34] Griewank, A. On automatic differentiation. In Mathematical Programming:

Recent Developments and Applications (1990), Kluwer Academic Publishers, IL.

BIBLIOGRAPHY 186

[35] Griewank, A., Juedes, D., and Utke, J. Algorithm 755: ADOL-C: A

package for the automatic differentiation of algorithms written in C/C++. ACM

Transactions on Mathematical Software 22, 2 (1996), 131–167.

[36] Griewank, A., and Walther, A. Evaluating Derivatives: Principles and

Techniques of Algorithmic Differentiation, second ed. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2008.

[37] Gropp, W., Kaushik, D., Keyes, D., and Smith, B. High performance

parallel implicit CFD. Parallel Computing 27 (2001), 337–362.

[38] Gustafsson, K. Control-theoretic techniques for stepsize selection in implicit

Runge-Kutta methods. ACM Transactions of Mathematical Software (1994),

496–517.

[39] Haney, S. Is C++ fast enough for Scientific Computing? Computers in Physics

8 (1994).

[40] Haney, S., and Crotlinger, J. How templates enable high-performance

scientific computing in C++. Computing in Science Engineering 1, 4 (jul/aug

1999), 66 –72.

[41] Jenny, P., Tchelepi, H. A., and Lee, S. H. Unconditionally convergent

nonlinear solver for hyperbolic conservation laws with s-shaped flux functions.

Journal of Computational Physics 228, 20 (2009), 7497 – 7512.

[42] Karmesin, S., Crotinger, J., Cummings, J., Haney, S., Humphrey,

W. J., Reynders, J., Smith, S., and Williams, T. Array design and

expression evaluation in POOMA II. In Proceedings of the Second International

Symposium on Computing in Object-Oriented Parallel Environments (London,

UK, 1998), ISCOPE ’98, Springer-Verlag, pp. 231–238.

[43] Keyes, D. Terascale implicit methods for partial differential equations. Pro-

ceedings of The Barrett Lectures, AMS Contemporary Mathematics, Providence

306 (2002), 29–84.

BIBLIOGRAPHY 187

[44] Kim, J., and Finsterle, S. Application of automatic differentiation in

Tough2. In Proceedings of The Tough Symposium, LBNL (May 2003), LBNL.

[45] Kirby, R. C. A new look at expression templates for matrix computation.

Computing in Science Engineering 5, 3 (may-june 2003), 66 – 70.

[46] Kwok, F., and Tchelepi, H. Potential-based reduced newton algorithm for

nonlinear multiphase flow in porous media. Journal of Computational Physics

227 (2007), 706–727.

[47] LeVeque, R. J. Numerical Methods For Conservation Laws. Lectures in Math-

ematics, ETH Zurich. Birkhauser Verlag, Switzerland, 1992.

[48] Li, X. S., and Demmel, J. W. SuperLU DIST: A scalable distributed-memory

sparse direct solver for unsymmetric linear systems. ACM Transact ions on

Mathematical Software (TOMS) 29, 2 (2003), 110–140.

[49] Mclachlan, R. I., and Quispel, G. R. W. Splitting methods. Acta Nu-

merica 11, -1 (2002), 341–434.

[50] Muller, S., and Stribia, Y. Fully adaptive multiscale schemes for con-

servation laws employing locally varying time stepping. Journal of Scientific

Computing 30 (2007), 493–531.

[51] Naccache, P. A fully-implicit thermal reservoir simulator. In Proceedings of

The 14th SPE Symposium on Reservoir Simulation, Dallas (June 1997), SPE,

pp. 97–103.

[52] Ortega, J., and Rheinboldt, W. Iterative Solution of Nonlinear Equations

in Several Variables. New York Academic Press, 1970.

[53] Parashar, M., Wheeler, J., Pope, G., K.Wang, and Wang, P. A

new generation EOS compositional reservoir simulator: Part II - framework and

multiprocessing. In SPE 37977 presented at the 1997 SPE Reservoir Simulation

Symposium, Dallas (June 1997), SPE.

BIBLIOGRAPHY 188

[54] Plewa, T., and Linde, T. Adaptive Mesh Refinement - Theory and Appli-

cations. Proceedings of the Chicago Workshop on Adaptive Mesh Refinement in

Computational Science and Engineering, 2003. Springer, Berlin, 2003.

[55] Pope, G. A., and Nelson, R. C. A chemical flooding compositional simula-

tor. SPE Journal 18, 5 (1978), 339–354.

[56] Rall, L. Perspectives on automatic differentiation: Past, present, and future. In

Automatic Differentiation: Applications, Theory, and Implementations) (2005),

Lecture Notes in Computer Science and Engineering, Springer-Verlag.

[57] Robison, A. C++ gets faster for Scientific Computing. Computers in Physics

10 (1996).

[58] Rostaing, N., Dalmas, S., and Galligo, A. Automatic differentiation in

Odyssée. Tellus Series A 45 (Oct. 1993), 558–+.

[59] Schlumberger. Eclipse Technical Description 2008.2. Schlumberger, 2008.

[60] Shiriaev, D., and Griewank, A. ADOL-F automatic differentiation of For-

tran codes. In Computational Differentiation: Techniques, Applications, and

Tools (1996), SIAM, pp. 375–384.

[61] Shroff, G., and Keller, H. Stabilization of unstable procedures; the recur-

sive projection method. SIAM Journal of Numerical Analysis 30 (1993).

[62] Siek, J. G., and Lumsdaine, A. The matrix template library: Generic com-

ponents for high-performance scientific computing. Computing in Science and

Engineering 1, 6 (Nov 1999), 70–78.

[63] Stroustrup, B. C++ Programming Language. Addison-Wesley, MA, 2000.

[64] Sutter, H. The concurrency revolution. C/C++ Users Journal 23 (2005).

[65] Sutter, H. The free lunch is over. Dr. Dobb’s Journal 30 (2005).

BIBLIOGRAPHY 189

[66] Toronyi, R. M., and Ali, S. M. F. Two-phase, two-dimensional simulation

of a geothermal reservoir. SPE Journal 17, 3 (1977), 171–183.

[67] Vandevoorde, D., and Josuttis, N. M. C++ Templates: The Complete

Guide. Addison-Wesley Professional, Nov. 2002.

[68] Veldhuizen, T., and Jernigan, M. Will C++ be faster than Fortran? In

1st International Scientific Computing in Object-Oriented Parallel Environments

(ISCOPE’97) (1997), Lecture Notes in Computer Science. Springer-Verlag.

[69] Veldhuizen, T. L. Arrays in Blitz++. In Proceedings of the Second Inter-

national Symposium on Computing in Object-Oriented Parallel Environments

(London, UK, 1998), ISCOPE ’98, Springer-Verlag, pp. 223–230.

[70] Veldhuizen, T. L. C++ templates as partial evaluation. In IN ACM

SIGPLAN WORKSHOP ON PARTIAL EVALUATION AND SEMANTICS-

BASED PROGRAM MANIPULATION (1999), ACM Press, pp. 13–18.

[71] Veldhuizen, T. L., and Gannon, D. Active Libraries: Rethinking the roles

of compilers and libraries. ArXiv Mathematics e-prints (Oct. 1998).

[72] Verma, S., and Aziz, K. SPE 36007, FLEX: An Object-Oriented reservoir

simulator. In SPE Petroleum Computer Conference, Dallas (June 1996), SPE.

[73] Watson, L. Numerical linear algebra aspects of globally convergent homotopy

methods. SIAM Review 28 (1986).

[74] Watson, L., Billups, S., and Morgan, A. Algorithm 652, HOMPACK, a

suite of codes for globally convergent homotopy algorithms. ACM Transactions

on Mathematical Software 13 (1987), 281–310.

[75] Yanenko, N. N. The method of fractional steps: the solution of problems of

mathematical physics in several variables. Springer, 1971.

